Atjaunināt sīkdatņu piekrišanu

Tunable Materials with Applications in Antennas and Microwaves [Mīkstie vāki]

  • Formāts: Paperback / softback, 252 pages, height x width: 235x191 mm
  • Sērija : Synthesis Lectures on Antennas
  • Izdošanas datums: 09-Sep-2019
  • Izdevniecība: Morgan & Claypool Publishers
  • ISBN-10: 1681736314
  • ISBN-13: 9781681736310
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 115,84 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 252 pages, height x width: 235x191 mm
  • Sērija : Synthesis Lectures on Antennas
  • Izdošanas datums: 09-Sep-2019
  • Izdevniecība: Morgan & Claypool Publishers
  • ISBN-10: 1681736314
  • ISBN-13: 9781681736310
Citas grāmatas par šo tēmu:

Tunable Materials with Applications in Antennas and Microwaves is a stimulating topic in these modern times.

With the explosion of the new generation of the wireless world, greater emphasis than ever before is being placed on the analysis and applications of modern materials. This book describes the characteristics of Ferrites and Ferroelectrics and introduces the reader to Multiferroics.

  1. Represents, in a simple manner, the solid state physics and explains the permittivity and permeability tensor characteristics for the tunable materials of infinite and finite dimensions.
  2. Gives the applications of tunable materials in resonators, filters, microstrips, striplines, antennas, phase shifters, capacitors, varactors, and frequency selective surfaces.
  3. Describes in detail the mathematical analysis for spin and magnetostatic waves for infinite medium, thin slab films, and finite circular discs. The analysis contains original work, which the reader may extend in the future.
  4. Provides multiferroics, which are ferrite and ferroelectric composites. Multiferroics are very promising tunable materials which are believed will offer many applications in the near future.
  5. Contains the planar transmission lines with analytic formulas for multilayer microstrips, transmission lines, and waveguides with isotropic as well as anisotropic dielectric and magnetic materials. Also, gives the formulas to analyze the layered category of transmission lines with multiferroics.

This book is intended for antenna and microwave engineers as well as for graduate students of Materials Science and Engineering, Electrical & Computer Engineering, and Physics Departments.

List of Figures
xiii
List of Tables
xix
Preface xxi
Acknowledgments xxiii
1 Ferrites and Ferroelectrics
1(14)
1.1 Tunable Electromagnetic Materials
1(1)
1.2 Overview of the Evolution of Ferrites
2(1)
1.3 Ferroelectrics
3(4)
1.3.1 Bulk Ferroelectrics
3(1)
1.3.2 Thin Film Ferroelectrics
4(3)
1.4 Ferrite-Ferroelectric Films
7(1)
1.5 Tunable Frequency Selective Surfaces (FSSs)
8(1)
1.6 References
9(6)
2 Tunable Materials-Characteristics and Constitutive Parameters
15(58)
2.1 Introduction
15(2)
2.2 Microwave Ferrites
17(8)
2.2.1 Historical Evolution
17(1)
2.2.2 Unique Ferrite Features
17(1)
2.2.3 Integration of Microwave Magnetic
17(1)
2.2.4 Basic Properties of Magnetic Materials
18(1)
2.2.5 Electron Magnetic Moment--Bohr Magneton
19(1)
2.2.6 Properties and Types of Magnetic Materials
20(5)
2.3 Ferrimagnetics: Ferrite Materials and Magnetic Garnets
25(6)
2.3.1 Spinnel Ferrites
25(3)
2.3.2 Hexagonal Ferrites or Hexaferrites-Permanent Magnetic Ferrites
28(1)
2.3.3 Magnetic Garnets
28(3)
2.4 Ferrite Films
31(1)
2.4.1 Garnet Monocrystallized Films
31(1)
2.4.2 Polycrystalline Ferrite Films
32(1)
2.5 Ferrite Films and MMIC Combatibility
32(1)
2.6 Ferrite Constitutive Relations
33(9)
2.6.1 Magnetization Equations
34(2)
2.6.2 Permeability Tensor
36(1)
2.6.3 Axial Magnetization in Cylindrical Coordinates
37(1)
2.6.4 Circumferential Magnetization in Cylindrical Coordinates
38(1)
2.6.5 Magnetization at an Arbitrary Direction in Cartesian Coordinates
38(1)
2.6.6 Permeability Tensor: Taking Losses into Account
39(3)
2.7 Dielectric Properties of Ferrites
42(4)
2.7.1 Electronic Polarizability (ae)
43(1)
2.7.2 Ionic or Atomic Polarizability (or/)
43(1)
2.7.3 Permanent Dipole Polarizility (aj)
44(1)
2.7.4 Space Charge Polarizability (as)
44(1)
2.7.5 Dielectric Losses
45(1)
2.7.6 Conduction Mechanism in Ferrites and Garnets
45(1)
2.7.7 Magnetic Losses
46(1)
2.8 Ferroelctric Properties
46(1)
2.8.1 Electric Polarization-Permittivity
46(1)
2.9 Ferroelectricity
47(2)
2.10 Hysteresis Loop
49(1)
2.11 Ferroelectric Materials--Perovskites
49(1)
2.12 The Perovskite Crystal Structure
50(1)
2.13 Ferroelectricity as a Result of Crystallic Asymmetry
51(1)
2.14 Paraelectric Phase
52(2)
2.15 Quantum or Incipient Ferroelectric
54(1)
2.16 Perovskite Superlattices
55(1)
2.17 Conventional Ferroelectrics--Temperature and DC Bias Dependence
56(1)
2.18 Superconductor Perovskites
56(2)
2.19 Ferroelectric Layers and Electrode Interfaces
58(1)
2.20 Hysteresis Loop of Ferroelectrics
59(1)
2.21 Theory of the Ferroelectric Dielectric Response
60(2)
2.22 Ferroelectric Tunability
62(1)
2.23 Ferroelectric Microwave Losses
63(3)
2.23.1 Intrinsic Losses
63(2)
2.23.2 Extrinsic Losses
65(1)
2.23.3 Losses Due to Charged Defects
65(1)
2.23.4 Losses of Local Polar Regions
65(1)
2.24 References
66(7)
3 Finite Ferrite Samples
73(98)
3.1 Demagnitization Factors and Ferrite Samples
73(4)
3.2 Spin Waves and Magnetostatic Waves
77(2)
3.3 Low- vs. High-Order Spin Waves
79(1)
3.4 Magnetostatic Modes
80(1)
3.5 Spin-Wave Spectrum Manifold
80(1)
3.6 Exchange-Field Interaction
81(2)
3.7 Anisotropy Energy
83(2)
3.8 Magnetization Equation for Spin Waves
85(1)
3.9 Spin Waves as Magnons
86(1)
3.10 Spin Waves in an Infinite Medium
87(1)
3.11 Spin Waves Including Dipolar Interactions
88(3)
3.12 Spin-Waves Accounting for Dipole-Dipole Interaction
91(3)
3.13 Spin-Wave Manifold
94(3)
3.14 Preliminaries to Spin-Wave Excitation
97(1)
3.15 Spin Waves in a Finite Sample
97(3)
3.16 Magnetostatic Waves
100(1)
3.17 Susceptibility and Characteristic Equation-Uniform Mode
101(1)
3.18 The Magnetostatic Equation of a Uniformly Biased Specimen
102(3)
3.19 Magnetostatic Modes in an Infinite Medium
105(1)
3.20 Magnetostatic Manifold
106(2)
3.21 Magnetostatic Modes of an Infinitely Extending Thin Slab Film
108(7)
3.21.1 Phase and Group Velocities of MSFVW
113(2)
3.22 Longitudinally Magnetized Infinitely Extending Thin Slabs
115(11)
3.22.1 Magnetostatic Volume Modes (1 + X) < 0
121(5)
3.23 Magnetostatic Surface Waves (1 + X) < 0
126(19)
3.23.1 MSSW Propagating in the y-Direction (kz = 0)
127(3)
3.23.2 Non-Reciprocal Surface-Wave Modes
130(2)
3.23.3 Polarization of Magnetostatic Waves
132(1)
3.23.4 Polarization of MSSW Modes
133(2)
3.23.5 Graphic Representation of Magnetostatic Waves
135(2)
3.23.6 Magnetostatic Modes in an Infinite Circular Disk-Perpendicular Magnetization
137(2)
3.23.7 Finite Ferrite Disks
139(3)
3.23.8 Finite Cylindrically Symmetric Samples-Rods
142(3)
3.23.9 Faraday Rotation-Circular Polarization (CP)
145(1)
3.24 Magnetostatic Waves on Multilayer and Grounded Structures
145(14)
3.24.1 Grounded Ferrite Slab
145(3)
3.24.2 Magnetostatic Volume Modes: (1 + X) < 0
148(1)
3.24.3 Surface Wave Modes: (1 4- X) > 0
149(1)
3.24.4 Surface Waves Propagating Only in the y-Direction (kz -- 0)
149(2)
3.24.5 Grounded Dielectric-Ferrite Layers
151(3)
3.24.6 Magnetostatic Volume Modes (1 + X) < 0
154(1)
3.24.7 Volume Modes Propagating Only in the r-Direction (kY = 0)
154(1)
3.24.8 Magnetostatic Surface Modes (1 + X) > 0
154(1)
3.24.9 Surface Waves Propagating Only in the y-Direction (kz =0)
155(1)
3.24.10 Magnetostatic Modes of a Finite Width Slab
156(1)
3.24.11 Surface Modes of Finite Width Slab (-w/2 < z < w/2)
156(1)
3.24.12 Volume Modes of a Slab Finite in the r-Dimension
157(1)
3.24.13 Volume Modes of a Slab Finite in y-Dimension
158(1)
3.25 Transversely Biased Grounded Dielectric-Ferrite Layers
159(2)
3.26 Shielded Dielectric-Ferrite Layers
161(2)
3.26.1 Transversely Magnetized Shielded Dielectric-Ferrite Layers (MSFVW)
161(2)
3.27 Longitudinally Magnetized Shielded Dielectric Ferrite Layers
163(2)
3.27.1 Magnetostatic Volume Modes
164(1)
3.27.2 Magnetostatic Surface Modes (1 + X) > 0
165(1)
3.28 Magnetized and Spin Waves in Ferrite Slab with Losses
165(1)
3.29 Magnetostatic Wave Spectrum in the Presence of Losses
166(1)
3.30 References
166(5)
4 Multiferroics: Ferrite-Ferroelectric Composites
171(8)
4.1 Introduction
171(1)
4.2 Multiferroic Properties
172(2)
4.3 Topologies--Connectivity at Two-Phase Composites
174(2)
4.4 Multiferroics Constitutive Relations
176(1)
4.5 References
177(2)
5 Planar Transmission Lines
179(48)
5.1 Introduction
179(1)
5.2 Multilayer Microstrip Lines
179(1)
5.3 Three-Layers Microstrip Line
180(4)
5.4 Multiple Dielectric Layer Microstrip Line
184(3)
5.5 Frequency Dispersion of Multilayer Microstrip Lines
187(1)
5.6 Equivalent Single-Layer Microstrip (SLR)
188(3)
5.7 Characteristic Impedance vs. Frequency, Zo(f)
191(1)
5.8 Dielectric Losses
191(1)
5.9 Coplanar Transmission Lines
192(3)
5.10 Multilayer Coplanar Waveguide (CPW)
195(3)
5.10.1 Quasi-Static Approximation
195(3)
5.11 Symmetric Multilayer Coplanar Waveguides (wi = w2 -- w)
198(2)
5.11.1 Single-Layer CPW
200(1)
5.12 Multilayer CPW with Finite Ground Planes
200(4)
5.12.1 Characteristic Impedance
202(2)
5.13 Multilayer Coplanar Strips
204(1)
5.14 Microstrip Line on a Single Magnetic Substrate
204(7)
5.15 Microstrip on a Single Anisotropic Dielectric Substrate
211(4)
5.16 Microstrip Printed on a Weakly Magnetized Ferrite-Dielectric Substrate
215(5)
5.17 Microstrip Lines on Gyrotropic Substrate
220(1)
5.18 TEM Duality Principle in Gyrotropic Media
221(1)
5.19 References
222(5)
Authors' Biographies 227