Atjaunināt sīkdatņu piekrišanu

E-grāmata: Turbulence: A Fundamental Approach for Scientists and Engineers

  • Formāts: EPUB+DRM
  • Sērija : Mechanical Engineering Series
  • Izdošanas datums: 12-Oct-2022
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030954116
  • Formāts - EPUB+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Mechanical Engineering Series
  • Izdošanas datums: 12-Oct-2022
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030954116

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This textbook explains turbulent flows using an introductory but fundamental approach to teaching the core principles, striking a balance between theoretical and practical aspects of the topic without overwhelming the reader with mathematical detail. It is aimed at students in various engineering disciplinesmechanical, civil, environmentaland the geosciences. It is divided in five parts. Part 1 provides the fundamentals of turbulence, main hypotheses, and analysis tools; Part 2 illustrates various measurement techniques used to study turbulent flows; Part 3 explains the modelling and simulation frameworks to study turbulent flows; Part 4 describes brief applications of turbulence in engineering and sciences; and Part 5 presents basic statistical, mathematical, and numerical tools. 











Elucidates the theory behind turbulence in a concise yet rigorous manner





Combines theoretical, computational, experimental, and applied aspects of the topic





Reinforces concepts with practice problems at the end of each chapter





Provides brief chapters on statistics, mathematics, and numerical techniques





 
Part I Fundamentals
1 Introduction
3(4)
1.1 Overview
3(4)
References
5(2)
2 Equations of Fluid Motion
7(10)
2.1 The Continuity Equation
7(1)
2.2 The Momentum Equation
8(2)
2.3 Conserved Passive Scalars
10(1)
2.4 The Vorticity Equation
11(1)
2.5 Fluid Element Deformation
11(2)
2.6 Similitude and Non-Dimensional Transport Equations
13(4)
References
16(1)
3 Statistical Description of Turbulent Flows
17(14)
3.1 Preliminaries
17(1)
3.2 Mean and Moments
18(1)
3.3 Standardization
19(1)
3.4 Joint Random Variables
19(1)
3.5 Normal and Joint-Normal Distributions
20(1)
3.6 Random Processes
21(3)
3.7 Random Fields
24(1)
3.8 Statistically Stationary, Homogeneous, and Axisymmetric Turbulent Flows
25(1)
3.9 Isotropic and Anisotropic Turbulence
25(1)
3.10 Two-Point Correlation
26(1)
3.11 Wavenumber Spectra
26(2)
3.12 Types of Averaging
28(3)
References
30(1)
4 Mean Flow Equations
31(12)
4.1 Overview
31(2)
4.2 Tensor Properties
33(1)
4.3 Anisotropy
34(1)
4.4 Mean Scalar Equation
34(1)
4.5 Gradient-Diffusion and Turbulent-Viscosity Hypotheses
35(8)
References
42(1)
5 Wall Flows
43(12)
5.1 Overview
43(1)
5.2 Transport Equations and the Balance of Mean Forces
43(3)
5.3 The Shear Stress Near Wall
46(2)
5.4 Viscous, Buffer, and Log-Law Sublayers
48(1)
5.5 Law of the Wall for Temperature
49(6)
References
54(1)
6 Free Shear Flows
55(10)
6.1 Overview
55(1)
6.2 Round Jet
55(1)
6.3 Axial Velocity
56(1)
6.4 Self-similarity
57(1)
6.5 Axial Variation of Scales
58(1)
6.6 Self-similarity of a Round Jet
58(1)
6.7 Reynolds Stresses
59(1)
6.8 Mean Continuity and Momentum Equations for a Jet
60(5)
References
63(2)
7 Compressible Flows
65(14)
7.1 Overview
65(1)
7.2 Continuity Equation for Compressible Flows
66(1)
7.3 Energy Equation for Compressible Flows
66(4)
7.4 Momentum Equation for Compressible Flows
70(1)
7.5 Similitude and Non-dimensional Transport Equations for Compressible Flows
71(2)
7.6 Boundary Layer Equations for Compressible Flows
73(3)
7.7 Mach Number
76(3)
References
77(2)
8 Scales of Turbulent Motion
79(18)
8.1 Preliminaries
79(1)
8.2 The Energy Cascade and Kolmogorov Hypotheses
80(4)
8.3 The Energy Spectrum
84(1)
8.4 Two-Point Correlation
85(3)
8.5 Structure Functions
88(1)
8.6 Taylor Hypothesis
89(8)
References
94(3)
9 Time and Frequency Domains
97(10)
9.1 Overview
97(1)
9.2 Discrete Fourier Transform
97(3)
9.3 Nyquist Frequency
100(1)
9.4 Discrete Energy Spectrum
100(1)
9.5 Discrete Energy Density Spectrum
101(1)
9.6 Spectra of Two Variables
102(5)
References
104(3)
Part II Measurement Techniques
10 Fundamentals of Measurements
107(20)
10.1 Overview
107(1)
10.2 Significant Digits
107(1)
10.3 Calibration
108(1)
10.4 Uncertainty
109(1)
10.5 Statistical Analysis of Random Uncertainties
110(1)
10.6 Normal and Student's t Distributions
111(3)
10.7 Rejection of Data
114(3)
10.8 Least-Squares Fitting
117(2)
10.9 Chi-Squared Test for a Distribution
119(2)
10.10 Two Sample Statistical Estimation
121(1)
10.11 Reporting Uncertainties
121(1)
10.12 Propagation of Uncertainties
122(5)
References
125(2)
11 In Situ Techniques
127(22)
11.1 Overview
127(1)
11.2 U-Tube Manometer
127(1)
11.3 Strain Gauge Pressure Transducers
128(2)
11.4 Electrical Resistance Thermometry
130(2)
11.5 Thermoelectric Temperature Measurement
132(2)
11.6 Hot Wire Anemometry (HWA)
134(2)
11.7 PitotTube
136(2)
11.8 Rotameters
138(1)
11.9 Balloons
139(10)
References
146(3)
12 Sonic and Ultrasonic Techniques
149(14)
12.1 Preliminaries
149(1)
12.2 Sonic and Ultrasonic Anemometers
149(4)
12.3 SOnic Detection And Ranging (SODAR)
153(10)
References
160(3)
13 Electro-magnetic Techniques
163(28)
13.1 Overview
163(1)
13.2 Shadowgraphy
163(2)
13.3 Particle Tracking Velocimetry (PTV)
165(2)
13.4 Particle Image Velocimetry (PIV)
167(6)
13.5 Schlieren Imaging
173(4)
13.6 Laser Doppler Velocimetry (LDV)
177(2)
13.7 Radiometry and Pyrometry
179(3)
13.8 Light Detection And Ranging (LiDAR)
182(9)
References
188(3)
Part III Turbulence Modelling and Simulation
14 Introduction to Modelling and Simulation
191(4)
14.1 Preliminaries
191(1)
14.2 Summary of Approaches
192(1)
14.3 Model or Simulation Completeness
192(1)
14.4 Turbulence Model or Simulation Closure Problem
193(1)
14.5 Digital Computation
193(2)
References
194(1)
15 Turbulent-Viscosity Models
195(16)
15.1 Preliminaries
195(2)
15.2 Algebraic Models
197(1)
15.3 Spalart--Allmaras Model
198(1)
15.4 Turbulence Kinetic Energy Models
199(2)
15.5 The k -- ε Model
201(1)
15.6 The k -- ω Model
202(1)
15.7 Turbulent-Viscosity Models for the Atmospheric Boundary Layer
203(8)
References
208(3)
16 Large-Eddy Simulation Models
211(20)
16.1 Preliminaries
211(1)
16.2 Filtering
212(1)
16.3 Filtered Conservation Equations
213(1)
16.4 The Smagorinsky Model
214(1)
16.5 One-equation Turbulence Kinetic Energy Model
215(1)
16.6 The Problem of Inlet Condition
216(1)
16.7 A Synthetic Inlet Turbulence Generator for Atmospheric Boundary Layers
217(14)
References
229(2)
17 Direct Numerical Simulation
231(4)
17.1 Overview
231(4)
References
233(2)
18 Wall Models
235(16)
18.1 Preliminaries
235(1)
18.2 Point-Wise Standard Wall Function
236(2)
18.3 Integrated Werner--Wengle Wall Function
238(2)
18.4 Van Driest Near-Wall Treatment
240(1)
18.5 Wall Models for the Atmospheric Boundary Layer
240(3)
18.6 Wall Function Summary
243(8)
References
249(2)
19 Model Evaluation
251(10)
19.1 Overview
251(1)
19.2 Verification and Validation
251(1)
19.3 Time and Space Discretization Error Estimation
252(1)
19.4 Order of Convergence
252(1)
19.5 Grid Independence Test (GIT)
253(1)
19.6 Grid Convergence Index (GCI)
254(1)
19.7 Reference and Model Error Quantification
255(6)
References
257(4)
Part IV Applications
20 Engineering
261(6)
20.1 Overview
261(1)
20.2 Liquid-Liquid Extraction Industries
261(1)
20.3 Coalescer
261(1)
20.4 Waste Water Treatment
262(1)
20.5 Desalination
262(1)
20.6 Combustion Devices
262(1)
20.7 Indoor Ventilation
263(1)
20.8 Aeronautics
263(1)
20.9 Renewable Energy
263(1)
20.10 River Engineering
264(3)
References
264(3)
21 Sciences
267(8)
21.1 Overview
267(1)
21.2 Meteorology
267(1)
21.3 Oceanography
268(1)
21.4 Space
269(6)
References
270(5)
Part V Fundamental Analysis Tools and Principles
22 Statistics
275(4)
22.1 Random Variables
275(1)
22.2 Event
275(1)
22.3 Probability
275(1)
22.4 Cumulative Distribution Function
276(1)
22.5 Probability Density Function
276(1)
22.6 Mean and Moments
277(1)
22.7 Probability Distributions
277(2)
References
278(1)
23 Mathematics
279(8)
23.1 Einstein's Notation
279(1)
23.2 Kronecker Delta
280(1)
23.3 Alternating Symbol
280(1)
23.4 Position Vector
280(1)
23.5 Divergence
281(1)
23.6 Gradient
281(1)
23.7 Curl
282(1)
23.8 Laplacian
282(1)
23.9 Dot Product of Two Vectors
283(1)
23.10 Cross Product of Two Vectors
283(1)
23.11 Material or Substantial Derivative
284(1)
23.12 Tensors
284(3)
References
286(1)
24 Numerical Methods
287(6)
24.1 Taylor Series Expansion
287(1)
24.2 The Finite Difference Method
287(1)
24.3 Newton's Method for Solving Non-linear System of Equations
288(1)
24.4 Explicit and Implicit Euler Methods
289(2)
24.5 Under Relaxation
291(2)
References
292(1)
Index 293
Dr. Amir A. Aliabadi is an Associate Professor in Environmental Engineering, School of Engineering, University of Guelph, CANADA.