Atjaunināt sīkdatņu piekrišanu

Ultrafast Dynamics of Phospholipid-Water Interfaces: Studied by Nonlinear Time-Resolved Vibrational Spectroscopy 1st ed. 2015 [Hardback]

  • Formāts: Hardback, 103 pages, height x width: 235x155 mm, weight: 454 g, 6 Illustrations, color; 36 Illustrations, black and white; X, 103 p. 42 illus., 6 illus. in color., 1 Hardback
  • Sērija : Springer Theses
  • Izdošanas datums: 18-Aug-2015
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319220659
  • ISBN-13: 9783319220659
  • Hardback
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 103 pages, height x width: 235x155 mm, weight: 454 g, 6 Illustrations, color; 36 Illustrations, black and white; X, 103 p. 42 illus., 6 illus. in color., 1 Hardback
  • Sērija : Springer Theses
  • Izdošanas datums: 18-Aug-2015
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319220659
  • ISBN-13: 9783319220659
This thesis presents a highly innovative study of the ultrafast structural and vibrational dynamics of hydrated phospholipids, the basic constituents of cell membranes. As a novel approach to the water-phospholipid interface, the author studies phosphate vibrations using the most advanced methods of nonlinear vibrational spectroscopy, including femtosecond two-dimensional infrared spectroscopy. He shows for the first time that the structure of interfacial water undergoes very limited fluctuations on a 300 fs time scale and that the lifetimes of hydrogen bonds with the phospholipid are typically longer than 10 ps. Such properties originate from the steric hindrance of water fluctuations at the interface and the orienting action of strong electric fields from the phospholipid head group dipoles. In an extensive series of additional experiments, the vibrational lifetimes of the different vibrations and the processes of energy dissipation are elucidated in detail.
1 Introduction
1(8)
1.1 Hydration Structure of Phospholipids
3(2)
1.2 Outline
5(4)
References
6(3)
2 Vibrational Spectroscopy
9(40)
2.1 Molecular Vibrations
9(10)
2.1.1 Vibrational Structure of Polyatomic Molecules
10(3)
2.1.2 Vibrational Lineshapes
13(3)
2.1.3 Vibrational Relaxation
16(1)
2.1.4 Molecular Vibrations as Local Probes in Hydrogen-Bonded Systems
17(2)
2.2 Theoretical Description of Nonlinear Spectroscopy
19(14)
2.2.1 Density Matrix Approach for Calculating Nonlinear Response Functions
20(13)
2.3 Experimental
33(16)
2.3.1 Generation and Characterization of Short Tuneable Mid-Infrared Pulses
33(4)
2.3.2 Passively Phase-Stabilized Heterodyne-Detected Photon Echo
37(3)
2.3.3 Two-Color Pump-Probe Setup
40(2)
2.3.4 Phospholipid Reverse Micelles
42(3)
References
45(4)
3 Ultrafast Vibrational Dynamics of Phospholipid Hydration Sites
49(18)
3.1 2D IR: Head-Group Fluctuations and Vibrational Couplings
50(8)
3.2 Energy Relaxation: Heat Sink Function of Small Water Pools
58(6)
3.3 Hydration-Insensitivity of Carbonyl Dynamics
64(3)
References
66(1)
4 Ultrafast Vibrational Dynamics of Phospholipid Hydration Shells
67(28)
4.1 OH Stretching Dynamics: Energy Redistribution into Small Water Pools
69(12)
4.1.1 Vibrational Relaxation to the Bending Mode
74(3)
4.1.2 2D Lineshapes as Probes for Energy Redistribution
77(2)
4.1.3 Small Water Pools as Heat Sinks for Intramolecular Vibrations
79(2)
4.2 OH Bending Dynamics: Energy Relaxation into Intermolecular Modes
81(8)
4.3 Hot Ground States as Local Thermometers, Energy Flow Out of Reverse Micelles
89(6)
References
91(4)
5 Conclusions
95(4)
Appendix A Experimental Pulse Parameters 99(2)
Curriculum Vitae 101