Atjaunināt sīkdatņu piekrišanu

Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures Second Edition 1999 [Mīkstie vāki]

  • Formāts: Paperback / softback, 522 pages, height x width: 235x155 mm, weight: 909 g, 2 Illustrations, color; 314 Illustrations, black and white; XVI, 522 p. 316 illus., 2 illus. in color., 1 Paperback / softback
  • Sērija : Springer Series in Solid-State Sciences 115
  • Izdošanas datums: 19-Oct-2010
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642083919
  • ISBN-13: 9783642083914
  • Mīkstie vāki
  • Cena: 180,78 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 212,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 522 pages, height x width: 235x155 mm, weight: 909 g, 2 Illustrations, color; 314 Illustrations, black and white; XVI, 522 p. 316 illus., 2 illus. in color., 1 Paperback / softback
  • Sērija : Springer Series in Solid-State Sciences 115
  • Izdošanas datums: 19-Oct-2010
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642083919
  • ISBN-13: 9783642083914
The field of ultrafast spectroscopy of semiconductors and their nanostruc­ tures continues to be an active field of research. Exciting new developments have taken place since the first edition of this book was completed in 1995. This revised edition includes a discussion of many of these recent develop­ ments in the field. This is accomplished by adding a chapter on Recent De­ velopments at the end of the book. This approach was selected to provide a discussion of results while they are still relatively recent. Results published before the end of May 1998 were considered for inclusion in this book. The objective of this revised edition remains the same as before: to provide a co­ hesive discussion of the many diverse contributions of ultrafast spectrosco­ py to the field of semiconductors. Extensive cross-references are made to earlier chapters in order to accomplish this goal. The chapter on Recent Developments begins with a brief discussion of new lasers, new techniques of ultrafast spectroscopy and novel nanostruc­ tures. This is followed by a section on Coherent Spectroscopy where some of the most interesting recent developments have taken place. These include observation of quantum kinetic effects, effects that require going beyond the mean-field approach of the semiconductor Bloch equations, coherent control of populations and current in semiconductors, exciton-continuum interac­ tions, and many diverse aspects of coherent spectroscopy including studies of microcavities, Bragg structures, quantum dots and quantum wires.

Papildus informācija

Springer Book Archives
1 Introduction
1(26)
1.1 Semiconductors: Basic Concepts
2(10)
1.1.1 Band Structure
2(3)
1.1.2 Excitons
5(1)
1.1.3 Phonons in Semiconductors
6(1)
1.1.4 Scattering Processes in Semiconductors
7(2)
1.1.5 Carrier Relaxation: Four Regimes
9(2)
1.1.6 Carrier Transport
11(1)
1.2 Ultrafast Lasers
12(1)
1.3 Ultrafast Spectroscopy Techniques
12(9)
1.3.1 Pump-Probe Spectroscopy
13(3)
1.3.2 FWM Spectroscopy
16(2)
1.3.3 Luminescence Spectroscopy
18(2)
1.3.4 Interferometric Techniques
20(1)
1.3.5 Terahertz Spectroscopy
20(1)
1.4 Interpretation of Results
21(5)
1.4.1 FWM Spectroscopy
21(1)
1.4.2 Pump-Probe Spectroscopy
21(2)
1.4.3 Raman Spectroscopy
23(1)
1.4.4 Luminescence Spectroscopy
23(1)
1.4.5 Calculation of the Dynamics
24(2)
1.4.6 Current Trends
26(1)
1.5 Summary
26(1)
2 Coherent Spectroscopy of Semiconductors
27(106)
2.1 Basic Concepts
28(21)
2.1.1 An Ensemble of Independent Two-Level Systems
29(12)
2.1.2 Semiconductor Bloch Equations
41(6)
2.1.3 Coherence Effects in Other Optical Experiments
47(2)
2.1.4 Concluding Remarks
49(1)
2.2 Dephasing of Excitons
49(8)
2.2.1 Exciton-Exciton and Exciton-Free-Carrier Collisions in Quantum Wells
49(2)
2.2.2 Exciton-Phonon Interactions
51(3)
2.2.3 Localized Excitons
54(3)
2.3 AC Stark Effect
57(3)
2.4 Transient Spectral Oscillations
60(1)
2.5 Exciton Resonance in FWM
61(2)
2.6 Quantum Beats of Excitons
63(15)
2.6.1 Beats from Discrete Excitonic Islands
64(2)
2.6.2 HH-LH Beats
66(3)
2.6.3 Quantum Beats of Magneto-Excitons
69(1)
2.6.4 Distinction Between Quantum and Polarization Beats
70(4)
2.6.5 Propagation Quantum Beats
74(4)
2.6.6 Concluding Remarks
78(1)
2.7 Interaction-Induced Effects: Beyond the Independent-Level Approximation
78(18)
2.7.1 Exciton-Exciton Interaction Effects
79(10)
2.7.2 Biexcitonic Effects
89(7)
2.8 Coherent Oscillations of an Electronic Wavepacket
96(7)
2.9 Bloch Oscillations in a Semiconductor Superlattice
103(8)
2.9.1 Semiclassical Picture
103(1)
2.9.2 Tight-Binding Picture
104(1)
2.9.3 Qualitative Quantum-Mechanical Picture
105(1)
2.9.4 Observation of Bloch Oscillations in Semiconductor Superlattices
106(2)
2.9.5 Influence of Excitons
108(3)
2.9.6 Concluding Remarks
111(1)
2.10 Coherent Spectroscopy of Free Electron-Hole Pairs
111(6)
2.10.1 Transient Oscillations
111(1)
2.10.2 Free-Carrier Dephasing in Bulk GaAs
112(1)
2.10.3 Free-Carrier Dephasing in Intrinsic Quantum Wells
112(1)
2.10.4 Free-Carrier Dephasing in Modulation-Doped Quantum Wells
113(3)
2.10.5 Time-Resolved FWM from Modulation-Doped Quantum Wells
116(1)
2.11 Coherent Phonons
117(3)
2.12 Terahertz Spectroscopy of Semiconductor Nanostructures
120(11)
2.12.1 Coherent Oscillations in a-DQWS
120(4)
2.12.2 HH-LH Oscillations
124(2)
2.12.3 Bloch Oscillations
126(2)
2.12.4 Coherent Control of Charge Oscillations
128(3)
2.12.5 Summary
131(1)
2.13 Conclusions
131(2)
3 Initial Relaxation of Photoexcited Carriers
133(28)
3.1 Non-thermal Distributions in GaAs
135(9)
3.1.1 Pump-Probe Spectroscopy
135(4)
3.1.2 Luminescence Spectroscopy
139(5)
3.2 Intervalley Scattering in GaAs
144(4)
3.3 Initial Carrier Relaxation in Quantum Wells
148(12)
3.3.1 Spectral Hole-Burning in GaAs Quantum Wells
148(5)
3.3.2 Non-thermal Holes in n-Modulation-Doped Quantum Wells
153(2)
3.3.3 Intersubband Scattering in Quantum Wells
155(5)
3.4 Summary and Conclusions
160(1)
4 Cooling of Hot Carriers
161(32)
4.1 Simple Model of Carrier Energy-Loss Rates and Cooling Curves
162(4)
4.2 Cooling Curves: Early Measurements and Analysis
166(5)
4.3 Other Factors Influencing the Cooling Curves
171(12)
4.3.1 Pauli Exclusion Principle and Fermi-Dirac Statistics
171(1)
4.3.2 Hot Phonons
172(3)
4.3.3 Screening and Many-Body Aspects
175(8)
4.4 Further Experimental Investigations of Energy-Loss Rates
183(9)
4.4.1 Direct Measurement of the Energy-Loss Rates
184(6)
4.4.2 Bulk vs Quasi-2D Semiconductors
190(2)
4.5 Conclusions
192(1)
5 Phonon Dynamics
193(32)
5.1 Phonon Dynamics in Bulk Semiconductors
194(14)
5.1.1 Phonon Generation in Bulk Semiconductors
194(2)
5.1.2 Phonon Detection by Raman Scattering
196(1)
5.1.3 Steady-State Results in GaAs
196(2)
5.1.4 Phonon Dynamics in GaAs
198(4)
5.1.5 Coherent Generation and Detection of Phonons
202(4)
5.1.6 Monte-Carlo Simulation of Phonon Dynamics in GaAs
206(2)
5.2 Phonon Dynamics in Quantum Wells
208(16)
5.2.1 Phonons in Quantum Wells
208(4)
5.2.2 Phonon Generation in Quantum Wells
212(1)
5.2.3 Phonon Detection by Raman Scattering
213(1)
5.2.4 Monte-Carlo Simulation of Phonon Dynamics in GaAs Quantum Wells
214(1)
5.2.5 Hot-Phonon Dynamics in GaAs Quantum Wells
215(3)
5.2.6 Determination of Phonon Occupation Number
218(2)
5.2.7 Experimental Determination of the Hot-Phonon Occupation Number and Dynamics
220(4)
5.3 Conclusions
224(1)
6 Exciton Dynamics
225(38)
6.1 Basic Concepts
225(11)
6.1.1 Exciton States
226(1)
6.1.2 Exciton-Polaritons
227(2)
6.1.3 Exciton Fine Structure
229(2)
6.1.4 Dynamical Processes of Excitons
231(5)
6.2 Experimental Results: Non-resonant Excitation
236(11)
6.2.1 Exciton-Formation Dynamics in GaAs Quantum Wells
236(5)
6.2.2 Exciton Relaxation Dynamics in Cu2O
241(2)
6.2.3 Spin Relaxation Dynamics in GaAs Quantum Wells
243(1)
6.2.4 Recombination Dynamics of Thermalized Excitons in GaAs Quantum Wells
244(3)
6.3 Experimental Results: Resonant Excitation
247(14)
6.3.1 Pump-and-Probe Studies
248(3)
6.3.2 Picosecond Luminescence Studies
251(6)
6.3.3 Femtosecond Luminescence Studies
257(4)
6.4 Conclusions
261(2)
7 Carrier Tunneling in Semiconductor Nanostructures
263(32)
7.1 Basic Concepts: Optical Markers
264(2)
7.2 Basic Concepts: Double-Barrier Structures
266(3)
7.3 Basic Concepts: Asymmetric Double-Quantum-Well Structures
269(9)
7.3.1 Optical Markers in a-DQWS
270(1)
7.3.2 Non-resonant Tunneling
271(1)
7.3.3 Resonant Tunneling
272(6)
7.4 Tunneling in Double-Barrier Structures
278(3)
7.4.1 Dependence on the Barrier Thickness
278(1)
7.4.2 Dependence on Electric Field
278(2)
7.4.3 Summary
280(1)
7.5 Non-resonant Tunneling in Asymmetric Double-Quantum-Well Structures
281(5)
7.5.1 Dependence on Barrier Thickness
282(1)
7.5.2 Resonant Phonon-Assisted Tunneling
283(3)
7.6 Resonant Tunneling in Asymmetric Double-Quantum-Well Structures
286(7)
7.6.1 Resonant Tunneling of Electrons: Initial Studies
286(2)
7.6.2 Resonant Tunneling of Holes: Initial Studies
288(1)
7.6.3 Resonant Tunneling of Electrons and Holes: Further Studies
289(2)
7.6.4 Unified Picture of Tunneling and Relaxation
291(2)
7.6.5 Summary
293(1)
7.7 Conclusions
293(2)
8 Carrier Transport in Semiconductor Nanostructures
295(30)
8.1 Basic Concepts
295(4)
8.1.1 Some Examples
297(2)
8.2 Perpendicular Transport in Graded-Gap Superlattices
299(9)
8.3 Carrier Sweep-Out in Multiple Quantum Wells
308(6)
8.3.1 Hybrid Technique
309(1)
8.3.2 All-Optical Studies of Carrier Sweep-Out
310(4)
8.4 Carrier Capture in Quantum Wells
314(9)
8.4.1 Theoretical Predictions
314(2)
8.4.2 Experimental Studies
316(4)
8.4.3 Implications for Lasers
320(2)
8.4.4 Summary
322(1)
8.5 Conclusions
323(2)
9 Recent Developments
325(122)
9.1 Nanostructures, Lasers and Techniques
325(10)
9.1.1 Semiconductor Nanostructures
325(6)
9.1.2 Ultrafast Lasers
331(1)
9.1.3 Measurement Techniques
331(4)
9.2 Coherent Spectroscopy
335(63)
9.2.1 Quantum Kinetics in Semiconductors
336(9)
9.2.2 Beyond the Semiconductor Bloch Equations
345(6)
9.2.3 Coherent Control in Semiconductors
351(10)
9.2.4 Phase Sensitive Measurements
361(4)
9.2.5 Exciton-Continuum Interaction
365(9)
9.2.6 Bloch Oscillations
374(2)
9.2.7 Coherent Phonons
376(1)
9.2.8 Plasmon-Phonon Oscillations
377(2)
9.2.9 HH-LH Resonance in the Continuum
379(2)
9.2.10 Biexcitons
381(2)
9.2.11 Coherent and Nonlinear Phenomena in Semiconductor Microcavities
383(7)
9.2.12 Coherence in Multiple Quantum-Well Structures and Bragg/Anti-Bragg Structures
390(5)
9.2.13 Coherent Properties of Quantum Wires and Dots
395(3)
9.3 Ultrafast Emission Dynamics
398(20)
9.3.1 Resonant Secondary Emission from Quantum Wells: Intensity
398(3)
9.3.2 Resonant Secondary Emission from Quantum Wells: Investigation by Phase-Locked Pulses
401(6)
9.3.3 Resonant Secondary Emission from Quantum Wells: Direct Measurement of Amplitude and Phase
407(3)
9.3.4 Microcavities
410(8)
9.4 The Incoherent Regime: Dynamics and High-Intensity Effects
418(28)
9.4.1 Carrier Dynamics
419(6)
9.4.2 Exciton Dynamics
425(2)
9.4.3 Quantum Wires: Capture and Relaxation Dynamics
427(5)
9.4.4 Quantum Wires: High-Density Effects
432(3)
9.4.5 Quantum Dots: Relaxation Dynamics
435(8)
9.4.6 Carrier-Transport Dynamics
443(3)
9.5 Epilogue
446(1)
References 447(62)
Subject Index 509