Atjaunināt sīkdatņu piekrišanu

E-grāmata: Ultrasonic Technology for Desiccant Regeneration

  • Formāts: EPUB+DRM
  • Izdošanas datums: 25-Aug-2014
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781118921630
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 143,89 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Izdošanas datums: 25-Aug-2014
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781118921630
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Aiming to improve energy efficiency, regeneration time, and the performance of the desiccant air conditioning system, this volume outlines ultrasonic-assisted regeneration technology for desiccant air conditioning systems and the air dehumidification cycle, focusing on the mechanism of solid/liquid desiccant regeneration enhancement through power ultrasonic radiation. It explains technologies related to desiccant materials, desiccant dryer systems and regeneration methods, and the background on ultrasound and methods for producing it; ultrasound-assisted regeneration of silica gel and new honeycomb desiccant material; ultrasound-atomizing regeneration for liquid desiccants and the effect of the ultrasonic atomization on the liquid desiccant regeneration; the principle and design calculation method for longitudinal and radial vibration ultrasonic transducers that have applications in ultrasound-assisted regeneration; and various desiccant air conditioning systems with ultrasonic-assisted regeneration. Annotation ©2015 Ringgold, Inc., Portland, OR (protoview.com)
About the Authors ix
Preface xi
Acknowledgements xiii
Nomenclature xv
1 Introduction
1(32)
1.1 Background
1(1)
1.2 Literature Reviews
2(17)
1.2.1 Desiccant Materials
2(2)
1.2.2 Types of Desiccant Dryer
4(6)
1.2.3 Regeneration Methods
10(9)
1.3 The Proposed Method
19(7)
1.3.1 Basic Knowledge about Ultrasound
19(3)
1.3.2 Sound Generation
22(2)
1.3.3 Fundamental Theory for Ultrasound-Assisted Regeneration
24(2)
1.4 Summary
26(7)
References
26(7)
2 Ultrasound-Assisted Regeneration of Silica Gel
33(108)
2.1 Theoretical Analysis
33(5)
2.2 Experimental Study
38(13)
2.2.1 Experimental Setup
38(1)
2.2.2 Procedure for Experiments
39(1)
2.2.3 Methods
40(2)
2.2.4 Results and Discussions
42(9)
2.3 Empirical Models for Ultrasound-Assisted Regeneration
51(8)
2.3.1 Model Overviews
51(1)
2.3.2 Model Analysis
52(7)
2.4 Theoretic Model for Ultrasound-Assisted Regeneration
59(30)
2.4.1 Physical Model
62(1)
2.4.2 Mathematical Model for Ultrasonic Wave Propagation
62(5)
2.4.3 Mathematical Model for Heat and Mass Transfer in Silica Gel Bed
67(8)
2.4.4 Model Validation
75(10)
2.4.5 Error Analysis for Experimental Data
85(4)
2.5 Parametric Study on Silica Gel Regeneration Assisted by Ultrasound
89(21)
2.5.1 Acoustic Pressure and Oscillation Velocity in the Packed Bed
89(2)
2.5.2 Thermal Characteristics of the Bed during Ultrasound-Assisted Regeneration
91(15)
2.5.3 Enhancement of Regeneration Assisted by Ultrasound
106(4)
2.5.4 Comparisons between the Transverse- and Radial-Flow Beds
110(1)
2.6 Quantitative Contribution of Ultrasonic Effects to Silica Gel Regeneration
110(9)
2.6.1 Theoretical Analysis
110(3)
2.6.2 Method
113(1)
2.6.3 Results and Discussions
114(5)
2.7 Energy-Saving Features of Silica Gel Regeneration Assisted by Ultrasound
119(7)
2.7.1 Specific Energy Consumption
119(1)
2.7.2 Results and Discussions
120(5)
2.7.3 Brief Summary
125(1)
2.8 Effects of Ultrasound-Assisted Regeneration on Desiccant System Performance
126(15)
2.8.1 Study Objective and Method
126(1)
2.8.2 Results and Discussions
127(12)
2.8.3 Brief Summary
139(1)
References
139(2)
3 Ultrasound-Assisted Regeneration for a New Honeycomb Desiccant Material
141(36)
3.1 Brief Introduction
141(1)
3.2 Experimental Study
142(17)
3.2.1 Experimental System
142(1)
3.2.2 Raw Material and Experimental Conditions
142(2)
3.2.3 Analysis Parameters
144(1)
3.2.4 Experimental Results
145(9)
3.2.5 Energy Attenuation and Absorptivity of Ultrasound in the Material
154(5)
3.3 Theoretical Model for Honeycomb-Type Desiccant Regeneration
159(4)
3.3.1 Basic Assumptions
159(1)
3.3.2 Governing Equations
159(1)
3.3.3 Determination of Key Parameters
160(1)
3.3.4 Model Validation
161(2)
3.4 Model Simulations and Analysis
163(13)
3.4.1 Parametric Study
163(9)
3.4.2 Quantitative Contributions of Ultrasonic Effects to the Regeneration of Honeycomb- Type Desiccant
172(4)
3.5 Summary
176(1)
References
176(1)
4 Ultrasound-Atomizing Regeneration for Liquid Desiccants
177(58)
4.1 Overview
177(6)
4.1.1 Principles and Features of the Liquid-Desiccant Dehumidification
177(1)
4.1.2 Thermo-Physical Properties of Liquid Desiccant Materials
178(4)
4.1.3 Research Status of Solution Regenerators
182(1)
4.2 Theoretical Analysis
183(18)
4.2.1 Mass Transfer Coefficients for the Droplets
183(9)
4.2.2 Atomized Size of Droplet by Ultrasonic Atomizing
192(2)
4.2.3 Droplet Distribution Characteristics and Measurement Techniques
194(2)
4.2.4 Vapor Pressure of Liquid Desiccant Mixture
196(5)
4.3 Theoretical Modeling for the Ultrasound-Atomizing Regenerator
201(20)
4.3.1 Assumptions
201(1)
4.3.2 Basic Equations
201(1)
4.3.3 Determination of Key Parameters
202(1)
4.3.4 Model Validation
203(5)
4.3.5 Parametric Study
208(13)
4.4 Performance Analysis of Liquid-Desiccant Dehumidification System with Ultrasound-Atomizing Regeneration
221(14)
4.4.1 The Ultrasound-Atomizing Regenerator versus the Packed One
221(5)
4.4.2 Performance of Liquid Desiccant System with Different Regenerators
226(7)
References
233(2)
5 Ultrasonic Transducers
235(48)
5.1 Longitudinal Vibration of Sandwich Piezoelectric Ultrasonic Transducer
235(23)
5.7.7 Overview
235(5)
5.7.2 Theoretical Analysis
240(8)
5.1.3 State Equations of Sandwich Piezoelectric Electromechanical Transducer
248(8)
5.1.4 Design Case
256(2)
5.2 Radial Vibration Ultrasonic Transducer
258(17)
5.2.7 Overview
258(1)
5.2.2 Theoretical Analysis and Design of a Binary Radial Transducer
259(8)
5.2.3 Radial Vibration Sandwich Piezoelectric Transducer
267(8)
5.2.4 Summary
275(1)
5.3 Ultrasonic Atomization Transducer
275(8)
5.3.1 Basic Principle of Ultrasonic Atomization
275(1)
5.3.2 Basic Structure of Ultrasonic Atomizers
275(2)
5.3.3 Research Status and Applications
277(4)
References
281(2)
6 Desiccant System with Ultrasonic-Assisted Regeneration
283(10)
6.1 For Solid-Desiccant System
283(4)
6.7.7 Based on the Longitudinal Vibration Ultrasonic Transducer
283(1)
6.7.2 Based on the Radial Vibration Ultrasonic Transducer
284(3)
6.2 For Liquid-Desiccant System
287(2)
6.3 Future Work
289(4)
6.3.1 Development of Ultrasonic Transducer
289(1)
6.3.2 Development of Desiccant Materials Adaptive to Ultrasound-Assisted Regeneration
290(1)
6.3.3 Development of Demister
290(1)
6.3.4 Environmental Impact
290(2)
References
292(1)
A Basic Equations for Properties of Common Liquid Desiccants
293(14)
A.1 Lithium Chloride (LiCl)
293(4)
A.2 Calcium Chloride (CaCl2)
297(2)
A.3 Lithium Bromide (LiBr)
299(3)
A.4 Vapor Pressure (Pa)
302(1)
A.5 Specific Thermal Capacity (J/(kg-°C))
303(1)
A.6 Density (kg/m3)
303(1)
A.7 Dynamic Viscosity (Pa s)
303(4)
References
306(1)
Index 307
Ye Yao and Shiqing Liu are the authors of Ultrasonic Technology for Desiccant Regeneration, published by Wiley.