Atjaunināt sīkdatņu piekrišanu

E-grāmata: Ultrasound in Food Processing: Recent Advances

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : IFST Advances in Food Science
  • Izdošanas datums: 19-Apr-2017
  • Izdevniecība: Wiley-Blackwell
  • Valoda: eng
  • ISBN-13: 9781118964170
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 204,57 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: PDF+DRM
  • Sērija : IFST Advances in Food Science
  • Izdošanas datums: 19-Apr-2017
  • Izdevniecība: Wiley-Blackwell
  • Valoda: eng
  • ISBN-13: 9781118964170
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

IFST Advances in Food Science

Ultrasound in Food Processing Recent Advances

Edited by Mar Villamiel, Jose V. Garcia-Perez, Antonia Montilla, Juan A. Carcel, and Jose Benedito

Ultrasound has emerged as one of the most promising green, low-cost and easy-to-implement on-line technologies, which can be used in different disciplines. Thus, low-intensity ultrasound is recognized as a useful non-destructive and non-invasive tool for food and process quality evaluation

Ultrasound in Food Processing: Recent Advances presents the theory, principles and applications of ultrasound organized into three main sections

Fundamentals of Ultrasound looks at the main basic principles of ultrasound generation and propagation, and those phenomena related to low- and high-intensity ultrasound applications. The mechanisms involved in food analysis and process monitoring, and in food process intensification are covered

Low-intensity Ultrasound Applications presents novel applications that could be relevant for future applications in the food industry. These chapters are grouped into two subsections: food and process control, and new trends

High-intensity Ultrasound Applications addresses the challenges of applying ultrasound in different media. An up-to-date vision of the use of high-intensity ultrasound in food processes is presented, with chapters grouped into three subsections according to the medium in which the ultrasound vibration is transmitted from the transducers to the product being treated, and the effect on food constituents

This book is aimed at scientists and engineers in several areas, including physics, acoustics, chemistry, food engineering, food safety, food science and related disciplines. It is a valuable reference book for researchers, food industry professionals and students in these areas

Part I: Fundamentals of ultrasound
This part will cover the main basic principles of ultrasound generation and propagation and those phenomena related to low and high intensity ultrasound applications. The mechanisms involved in food analysis and process monitoring and in food process intensification will be shown.

Part II: Low intensity ultrasound applications
Low intensity ultrasound applications have been used for non-destructive food analysis as well as for process monitoring. Ultrasonic techniques, based on velocity, attenuation or frequency spectrum analysis, may be considered as rapid, simple, portable and suitable for on-line measurements. Although industrial applications of low-intensity ultrasound, such as meat carcass evaluation, have been used in the food industry for decades, this section will cover the most novel applications, which could be considered as highly relevant for future application in the food industry. Chapters addressing this issue will be divided into three subsections: (1) food control, (2) process monitoring, (3) new trends.

Part III: High intensity ultrasound applications
High intensity ultrasound application constitutes a way to intensify many food processes. However, the efficient generation and application of ultrasound is essential to achieving a successful effect. This part of the book will begin with a chapter dealing with the importance of the design of efficient ultrasonic application systems. The medium is essential to achieve efficient transmission, and for that reason the particular challenges of applying ultrasound in different media will be addressed.
The next part of this section constitutes an up-to-date vision of the use of high intensity ultrasound in food processes. The chapters will be divided into four sections, according to the medium in which the ultrasound vibration is transmitted from the transducers to the product being treated. Thus, solid, liquid, supercritical and gas media have been used for ultrasound propagation. Previous books addressing ultrasonic applications in food processing have been based on the process itself, so chapters have been divided in mass and heat transport, microbial inactivation, etc. This new book will propose a revolutionary overview of ultrasonic applications based on (in the authors’ opinion) the most relevant factor affecting the efficiency of ultrasound applications: the medium in which ultrasound is propagated. Depending on the medium, ultrasonic phenomena can be completely different, but it also affects the complexity of the ultrasonic generation, propagation and application.
In addition, the effect of high intensity ultrasound on major components of food, such as proteins, carbohydrates and lipids will be also covered, since this type of information has not been deeply studied in previous books.
Other aspects related to the challenges of food industry to incorporate ultrasound devices will be also considered. This point is also very important since, in the last few years, researchers have made huge efforts to integrate fully automated and efficient ultrasound systems to the food production lines but, in some cases, it was not satisfactory. In this sense, it is necessary to identify and review the main related problems to efficiently produce and transmit ultrasound, scale-up, reduce cost, save energy and guarantee the production of safe, healthy and high added value foods.   

About the IFST Advances in Food Science Book Series xvi
List of Contributors xvii
Preface xx
Part 1: Fundamentals of Ultrasound 1(26)
1 Basic Principles of Ultrasound
3(24)
Juan A. Gallego-Juarez
1.1 Introduction
4(1)
1.2 Generation and Detection of Ultrasonic Waves: Basic Transducer Types
5(7)
1.3 Basic Principles of Ultrasonic Wave Propagation
12(3)
1.4 Basic Principles of Ultrasound Applications
15(8)
1.4.1 Low-intensity Applications
15(1)
1.4.1.1 Non-destructive Testing of Materials
15(1)
1.4.1.2 Ultrasonic Imaging
17(1)
1.4.1.3 Process Control
18(1)
1.4.2 High-intensity Effects and Applications: Power Ultrasound
18(1)
1.4.2.1 Cleaning
22(1)
1.4.2.2 Atomization
22(1)
1.4.2.3 Mixing, Homogenization, and Emulsification
22(1)
1.4.2.4 Defoaming
22(1)
1.4.2.5 Drying and Dewatering
23(1)
1.4.2.6 Supercritical Fluid Extraction Assisted by Ultrasound
23(1)
1.4.2.7 Bioremediation
23(1)
1.4.2.8 Particle Agglomeration
23(1)
1.4.2.9 Sonochemical Processes
23(1)
1.5 Conclusions
23(1)
Acknowledgments
24(1)
References
24(3)
Part 2: Low-intensity Ultrasound Applications 27(228)
Section 2.1: Food and Process Control
29(146)
2 Ultrasonic Particle Sizing in Emulsions
30(35)
M.J. Holmes
M.J.W. Povey
2.1 Introduction
30(2)
2.2 Definitions: Emulsions and Ultrasound
32(3)
2.3 Theoretical Models of Ultrasound Propagation in Emulsions
35(6)
2.4 Diffraction and Scattering
41(3)
2.5 Multiple Scattering
44(2)
2.6 Mode Conversions
46(3)
2.7 Perturbation Solutions
49(4)
2.8 Two-particle Models
53(2)
2.9 Practical Particle Sizing Techniques
55(5)
2.10 Conclusion
60(1)
Acknowledgements
60(1)
References
60(5)
3 Ultrasonic Applications in Bakery Products
65(21)
J. Salazar
J.A. Chavez
A. Turo
M.J. Garcia-Hernandez
3.1 Introduction
65(2)
3.2 Ultrasonic Properties of Materials
67(1)
3.2.1 Ultrasonic Velocity
68(1)
3.2.2 Attenuation
69(1)
3.2.3 Acoustic Impedance
69(1)
3.3 Experimental Set-up for Ultrasonic Measurements
70(1)
3.3.1 Bread Dough
70(1)
3.3.2 Cake Batter
71(1)
3.4 Experimental Results and Discussion
71(1)
3.4.1 Wheat Dough
72(1)
3.4.2 Rice Dough
78(1)
3.4.3 Cake Batter
81(1)
3.5 Discussion and Conclusion
82(1)
References
82(4)
4 Characterization of Pork Meat Products using Ultrasound
86(29)
J.V Garcia-Perez
M. De Prados
J. Benedito
4.1 Introduction
86(3)
4.2 Ultrasonic Measurements: Devices and Parameters
89(2)
4.3 Assessment of Fat Properties
91(1)
4.3.1 Influence of Temperature on Ultrasonic Velocity
91(1)
4.3.2 Classification of Meat Products by means of their Fat Melting/Crystallization Behavior
92(1)
4.3.3 Monitoring of Fat Melting/Crystallization
97(4)
4.4 Composition Assessment
101(3)
4.5 Textural Properties
104(4)
4.6 New Trends
108(2)
Acknowledgements
110(1)
References
110(5)
5 The Application of Ultrasonics for Oil Characterization
115(31)
P. Kietczynski
5.1 Introduction
116(1)
5.1.1 Classical Methods for the Investigation of Physicochemical Parameters of Oils and Liquid Foodstuffs
117(1)
5.1.2 Ultrasonic Methods
117(1)
5.1.3 High-pressure Physicochemical Properties of Oils
120(1)
5.2 Physicochemical Parameters of Liquids (Oils) that can be Evaluated by means of Ultrasonic Methods
121(1)
5.2.1 Ultrasonic Wave Velocity and Density Measurement
121(1)
5.2.1.1 Adiabatic Compressibility
121(1)
5.2.1.2 Isothermal Compressibility
122(1)
5.2.1.3 Intermolecular Free Path Length
122(1)
5.2.1.4 Surface Tension
122(1)
5.2.1.5 Thermal Expansion Coefficient
122(1)
5.2.1.6 Specific Heat Capacity at Constant Pressure
123(1)
5.2.1.7 Specific Heat Ratio
123(1)
5.2.1.8 Van der Waals Constant
123(1)
5.2.1.9 Effective Debye Temperature
123(1)
5.2.1.10 Gruneisen Parameter
124(1)
5.2.1.11 Nonlinearity Parameter
124(1)
5.2.2 Measurement of Sound Velocity, Density, and Liquid Viscosity
124(1)
5.2.2.1 Internal Pressure
124(1)
5.2.2.2 Free Volume
124(1)
5.2.2.3 Viscous Relaxation Time
125(1)
5.2.2.4 Absorption Coefficient
125(1)
5.2.2.5 Optical Refractive Index
125(1)
5.3 Ultrasonic Measurements
125(1)
5.3.1 Sound Velocity
125(1)
5.3.1.1 Measurement of Ultrasonic Wave Velocity in Liquids using the Cross-correlation Method
127(1)
5.3.1.2 Uncertainty Analysis
128(1)
5.3.2 Viscosity
128(1)
5.3.3 Attenuation
129(1)
5.4 Measurements of Selected Physicochemical Parameters of Oils at Elevated Pressures and Various Values of Temperature
130(1)
5.4.1 Sound Velocity
131(1)
5.4.2 Density
131(1)
5.4.3 Numerical Approximation of Density and Sound Velocity
131(1)
5.4.4 Adiabatic Compressibility
132(1)
5.4.5 Isothermal Compressibility
133(1)
5.4.6 Isobaric Thermal Expansion Coefficient
134(1)
5.4.7 Specific Heat Capacity
134(1)
5.4.8 Surface Tension
134(1)
5.4.9 Investigation of High-pressure Phase Transitions in Oils by Ultrasonic Methods
135(1)
5.4.9.1 Viscosity
136(1)
5.4.9.2 Kinetics of High-pressure Phase Transformations
136(2)
5.5 Conclusions
138(1)
List of Symbols
139(2)
References
141(5)
6 Bioprocess Monitoring using Low-intensity Ultrasound: Measuring Transformations in Liquid Compositions
146(29)
L. Elvira
P. Resa
P. Castro
S. Kant Shukla
C. Sierra
C. Aparicio
C. Duran
F. Montero de Espinosa
6.1 Introduction
147(2)
6.2 Physical Models for Bioprocess-related Media
149(1)
6.2.1 Modelling the Medium
149(1)
6.2.1.1 Pure Liquids
149(1)
6.2.1.2 Homogeneous Liquid Mixtures
150(1)
6.2.1.3 Viscoelastic Models
153(1)
6.2.1.4 Suspensions
154(1)
6.2.2 Modelling the Bioprocess: Obtaining Information about the Medium Composition
154(2)
6.3 Ultrasonic Measurement Techniques for Bioprocess Monitoring and Instrumentation
156(1)
6.3.1 Measurement Based on Pulsed-wave Techniquds
156(1)
6.3.1.1 Sound Speed Measurement
157(1)
6.3.1.2 Attenuation Measurement
157(1)
6.3.1.3 Impedance Measurement
158(1)
6.3.2 Measurement Based on Resonance Techniques
158(1)
6.3.2.1 Sound Speed Measurement
159(1)
6.3.2.2 Attenuation Measurements
159(1)
6.3.2.3 Impedance Measurements
160(1)
6.3.3 Control of External Conditions: Temperature and Pressure
161(1)
6.4 Applications of Ultrasonic Technologies to Bioprocess Monitoring
161(1)
6.4.1 Enzymatic Processes
161(1)
6.4.1.1 Sucrose Hydrolysis
162(1)
6.4.1.2 Starch Hydrolysis
164(1)
6.4.2 Fermentative Processes
165(1)
6.4.2.1 Ultrasonic Monitoring of Alcoholic Fermentation
166(2)
6.4.3 Microbial Growth
168(1)
6.4.3.1 Ultrasonic Detection of Biological Contaminations in Food
168(1)
6.4.3.2 Biofilm Monitoring
170(1)
References
171(4)
Section 2.2: New Trends in Ultrasonic Non-destructive Testing
175(80)
7 Air-coupled Ultrasonic Transducers
176(53)
T.E. Gomez Alvarez-Arenas
7.1 Introduction
177(1)
7.1.1 Low-frequency (<60 kHz), High-power Transducers
177(1)
7.1.2 Low to Medium Frequency (<120 kHz), Relatively Low-power Transducers
177(1)
7.1.3 High-frequency (>100 kHz), Relatively Low-power Transducers
178(1)
7.2 High-frequency Transduction Technologies
178(1)
7.2.1 Capacitive Transducers
179(1)
7.2.2 Piezoelectric Transducers
179(1)
7.2.3 Ferroelectret Polymer Film Transducers
182(1)
7.3 Uses and Applications of High-frequency (>100 kHz) Ultrasonic Air-coupled Transducers
183(4)
7.4 Design Criteria for High-frequency Air-coupled Transducers
187(1)
7.4.1 Requirements Imposed by the Sample Insertion Loss
187(1)
7.4.2 Main Design Parameters
191(5)
7.5 Design of Wideband and High-frequency (>100 kHz) Air-coupled Piezoelectric Transducers
196(1)
7.5.1 Materials Selection
196(1)
7.5.1.1 Active Materials
196(1)
7.5.1.2 Passive Materials
198(2)
7.5.2 The Ideal Piezoelectric Air-coupled Transducer
200(1)
7.5.3 The Realistic Piezoelectric Air-coupled Transducer
201(1)
7.5.4 Why can Piezoelectric Transducers not be Designed Following the Optimum Design?
206(1)
7.5.4.1 Matching layers Mounting
207(1)
7.5.4.2 Open Porosity in the Matching Layers
207(1)
7.5.5 Realistic Alternatives for the Design of Air-coupled Piezoelectric Transducers
207(1)
7.5.6 Optimization under Realistic Constraints: The ML Detuning Technique
209(1)
7.5.6.1 First Stage: Optimization Considering Realistic Materials
209(1)
7.5.6.2 Second Stage: Optimization Considering Realistic Bonding between Layers-Transducer Optimization by ML Detuning
210(3)
7.6 High-frequency and Wideband Piezoelectric Transducers: Realizations in the Frequency Range 0.20-2.0 MHz
213(3)
7.7 Focusing Techniques
216(1)
7.7.1 Geometrically Focused Transducer Aperture
217(1)
7.7.2 Fresnel Zone Plates
217(1)
7.7.3 Off-axis Parabolic Mirror
218(1)
References
218(11)
8 Acoustic Microscopy
229(28)
N.J. Watson
M.J.W. Povey
N.G. Parker
8.1 Introduction
230(1)
8.2 Acoustic Microscope Theory
231(1)
8.3 Acoustic Contrast
232(1)
8.4 Focusing
233(2)
8.5 Spatial Resolution
235(2)
8.6 Temperature Effects
237(1)
8.7 Generation of an Acoustic Image
238(1)
8.8 Components and Operation of an Acoustic Microscope
238(1)
8.8.1 Transducer
238(1)
8.8.2 Sample Unit
242(1)
8.8.3 Positioning System
244(1)
8.8.4 Pulser and Receiver
244(1)
8.8.5 Control Software
244(1)
8.8.6 Sample Preparation and Operating Considerations
244(1)
8.9 Combination of Acoustic Microscopy with other Techniques
245(1)
8.10 Uses of Acoustic Microscopes in the Food Industry
245(4)
8.11 Future Trends for Acoustic Microscopes in the Food Industry
249(1)
8.11.1 Reduced Scanning Time
250(1)
8.11.2 Easier Sample Preparation
250(1)
8.11.3 Non-immersion Operation
250(1)
8.11.4 Non-contact Scanning
250(1)
8.12 Additional Resources
250(1)
Acknowledgements
250(1)
References
251(4)
Part 3: High-intensity Ultrasound Applications 255(251)
Section 3.1: Ultrasound Applications in Liquid Systems
257(97)
9 The Use of Ultrasound for the Inactivation of Microorganisms and Enzymes
258(29)
Cristina Arroyo
James G. Lyng
9.1 Introduction
259(1)
9.2 Microbial Inactivation by Ultrasound
259(1)
9.2.1 A Hint of History
259(1)
9.2.2 Mode of Action and Structural Studies
260(1)
9.2.3 Kinetics of Inactivation
264(1)
9.2.4 Factors Affecting the Lethal Effect of Ultrasound
264(1)
9.2.4.1 Factors Depending on the Microorganism and its Growth History
264(1)
9.2.4.2 Factors Depending on the Treatment Medium
266(1)
9.2.4.3 Factors Depending on the Ultrasound Treatment Conditions
266(1)
9.2.4.4 Factors Depending on the Recovery Conditions
272(1)
9.2.5 Ultrasound in Combination with other Hurdles
272(1)
9.3 Enzyme Inactivation by Ultrasound
272(1)
9.3.1 Alkaline Phosphatase (EC Number 3.1.3.1)
273(1)
9.3.2 Lactoperoxidase (EC Number 1.11.1.7)
274(1)
9.3.3 Lipase (EC number 3.1.1.3)
274(1)
9.3.4 Lipoxygenase (EC Number 1.13.11.12)
275(1)
9.3.5 Pectin Methylesterase (EC Number 3.1.1.11)
275(1)
9.3.6 Peroxidases (EC Number 1.11.1.7)
276(1)
9.3.7 Polyphenol Oxidases (EC Number 1.14.18.1)
277(1)
9.3.8 Proteases
277(1)
9.4 Conclusions and Future Trends
278(1)
References
278(9)
10 Ultrasonic Preparation of Food Emulsions
287(24)
A. Shanmugam
M. Ashokkumar
10.1 Introduction
287(1)
10.2 Formation of Emulsions
288(2)
10.3 Conventional Emulsification Techniques
290(1)
10.3.1 High-shear Mixer
290(1)
10.3.2 Pressure Homogenizers
291(1)
10.4 Ultrasonic Emulsification
292(1)
10.5 Factors Affecting Sono-emulsification
293(1)
10.5.1 Sonication Frequency
293(1)
10.5.2 Sonication Power
294(1)
10.5.3 Solution Temperature
295(1)
10.5.4 Sonication Time
295(1)
10.6 Role of Food Additives during Emulsification
295(1)
10.6.1 Emulsifiers
295(1)
10.6.2 Stabilizers
296(1)
10.7 Case Studies on Ultrasonic Emulsification
297(5)
10.8 Advantages of US over Other Emulsification Techniques
302(4)
10.9 Conclusions
306(1)
References
306(5)
11 Osmotic Dehydration and Blanching: Ultrasonic Pre-treatments
311(18)
Fabiano A.N. Fernandes
Sueli Rodrigues
11.1 Introduction
312(1)
11.2 Fundamentals
312(3)
11.3 Tissue Structure
315(1)
11.4 Pre-treatment Equipments
315(1)
11.5 Mass Balances
315(1)
11.5.1 Fick's Law
315(1)
11.5.2 Mass Transfer Model
317(1)
11.5.3 Correlations
318(1)
11.5.4 Water Loss and Sugar Gain
318(1)
11.6 Osmotic Solutes
319(1)
11.6.1 Binary Solutions
319(1)
11.6.2 Ternary Solutions
320(1)
11.7 Operating Conditions
320(1)
11.7.1 Ultrasound Frequency
320(1)
11.7.2 Osmotic Solution Concentration
321(1)
11.7.3 Temperature
321(1)
11.7.4 Immersion Time
321(1)
11.8 Preservation
321(1)
11.9 Quality Aspects
322(1)
11.9.1 Vitamin C Content
322(1)
11.9.2 Phenolics and Carotenoid Content
323(1)
11.9.3 Sensory Evaluation
323(1)
11.9.4 Color
323(1)
11.9.5 Mechanical Behavior
324(1)
References
325(4)
12 Ultrasonically Assisted Extraction in Food Processing and the Challenges of Integrating Ultrasound into the Food Industry
329(25)
T.J. Mason
M. Vinatoru
12.1 General Introduction
330(1)
12.2 Extraction Methods for Food Technology
331(1)
12.2.1 Conventional Methods
331(1)
12.2.1.1 Solvent Extraction
331(1)
12.2.1.2 Distillation
331(1)
12.2.1.3 Cold Compression
331(1)
12.2.2 Non-conventional Methods
331(1)
12.2.2.1 Supercritical Fluid Extraction
331(1)
12.2.2.2 Turbo (Vortex) Extraction
332(1)
12.2.2.3 Electrical Energy Extraction
332(1)
12.2.2.4 Microwave-assisted Extraction
332(1)
12.2.2.5 Ultrasonically Assisted Extraction
332(1)
12.2.3 Ultrasonically Assisted Extraction
332(1)
12.2.4 Conclusions
341(1)
12.3 The Challenges of Integrating Ultrasound in the Food Industry
341(1)
12.3.1 The Scale-up of Liquid Processing
343(1)
12.3.1.1 Batch Processes
344(1)
12.3.1.2 Flow Processes
344(5)
12.4 Concluding Remarks
349(1)
References
350(4)
Section 3.2: Ultrasound Applications in Gas and Supercritical Fluids Systems
354(63)
13 Ultrasonic Levitation Technologies
355(16)
K. Nakamura
13.1 Introduction
355(1)
13.2 Near-field Acoustic Levitation of a Planer Object
356(1)
13.2.1 Overview of Near-field Acoustic Levitation
356(1)
13.2.2 Model of Levitation
357(1)
13.2.3 Levitation of Large Plate
359(1)
13.3 Non-contact Transport of a Glass Plate
360(1)
13.3.1 Combination with a Motorized Stage
360(1)
13.3.2 Horizontal Force
360(1)
13.3.3 Non-contact Transport Utilizing Traveling Wave Vibrations
361(1)
13.3.4 Large-scale Transporter
363(1)
13.4 Levitation of Droplets in Standing Wave Field in Air
364(2)
13.5 Non-contact Manipulation of a Small Particle or Droplet in Air
366(1)
13.5.1 High-speed Transport of Particle/Droplet
366(1)
13.5.2 Step-by-step Transport
367(1)
13.5.3 Contactless Mixing of Two Droplets
368(1)
13.6 Summary
369(1)
References
369(2)
14 Ultrasonically Assisted Drying
371(21)
J.A. Carcel
J.V. Garcia-Perez
E. Riera
C. Rossello
A. Mulet
14.1 Introduction
372(1)
14.2 Why Ultrasound can Intensify Drying Processes
373(1)
14.3 Application of Ultrasound in Gas Media
373(2)
14.4 Influence of Process Variables on the Ultrasonically Assisted Drying Rate
375(1)
14.4.1 Drying Temperature
375(1)
14.4.2 Air Velocity
376(1)
14.4.3 Applied Ultrasonic Power
377(1)
14.4.4 Product Structure
378(2)
14.5 Influence of Ultrasound Application on the Quality of Dried Products
380(1)
14.5.1 Microstructure
380(1)
14.5.2 Physical Properties of Dried Materials
383(1)
14.5.3 Chemical Composition
384(1)
14.5.3.1 Maillard Reaction
384(1)
14.5.3.2 Antioxidant Activity
385(1)
14.5.3.3 Phenolic Compounds
385(1)
14.5.3.4 Vitamin Content
387(1)
14.6 Main Conclusions and Research Trends
388(1)
Acknowledgements
388(1)
References
388(4)
15 Microbial and Enzyme Inactivation by Ultrasound-assisted Supercritical Fluids
392(25)
C. Ortuno
J. Benedito
15.1 Introduction
393(1)
15.2 Microbial and Enzyme Inactivation by High-power Ultrasound
393(1)
15.3 Microbial and Enzyme Inactivation by Supercritical Carbon Dioxide
394(1)
15.3.1 Microbial Inactivation Mechanisms by SC-CO2
394(1)
15.3.2 Factors Affecting SC-CO2 Microbial Inactivation
396(1)
15.3.3 Mechanisms and Factors in the SC-CO2 Enzyme Inactivation
399(1)
15.4 Combination of HPU and SC-CO2 for Microbial/Enzyme Inactivation
400(1)
15.4.1 Synergistic Effect of HPU in the SC-CO2 Inactivation Process
400(1)
15.4.2 Effect of Temperature, Pressure, and Culture Media on SC-CO2+HPU Treatments
402(1)
15.4.2.1 SC-CO2+HPU Microbial Inactivation Kinetics in Culture Media
402(1)
15.4.2.2 SC-CO2+HPU Microbial Inactivation Kinetics in Juices
404(1)
15.4.2.3 SC-CO2+HPU Enzyme Inactivation Kinetics in Juices
406(1)
15.4.3 Effect of the SC-CO2+HPU Treatment on Cell Morphology and Regrowth Capacity
406(1)
15.4.4 Effect of the Type of Microorganism/Enzyme
411(1)
15.5 Conclusions
412(1)
15.6 Recommendations
412(1)
Acknowledgements
413(1)
References
413(4)
Section 3.3: Effect of Ultrasound on Food Constituents
417(89)
16 Impact of High-intensity Ultrasound on Protein Structure and Functionality during Food Processing
418(19)
M. Corzo-Martinez
M. Villamiel
F. Javier Moreno
16.1 Introduction
418(2)
16.2 Effect of High-intensity Ultrasound on Protein Structure and the Physicochemical Properties of Food Proteins
420(3)
16.3 Effect of High-intensity Ultrasound on the Technological Properties of Food Proteins
423(3)
16.4 Effect of High-intensity Ultrasound on Protein Glycation by the Maillard Reaction
426(2)
16.5 Effect of High-intensity Ultrasound on the Biological Properties of Food Proteins
428(2)
16.6 Conclusions and Future Trends
430(1)
Acknowledgements
431(1)
References
431(6)
17 Ultrasound Effects on Processes and Reactions Involving Carbohydrates
437(27)
A.C. Soria
M. Villamiel
A. Montilla
17.1 Introduction
438(1)
17.2 Sonophysical Effects
439(1)
17.2.1 Depolymerization
439(1)
17.2.2 Effects of Ultrasound on Functional Properties of Carbohydrates
441(1)
17.2.2.1 Technological Properties
441(1)
17.2.2.2 Bioactive Properties
443(1)
17.2.3 Use of Ultrasound in Carbohydrate Chemistry
443(1)
17.2.3.1 Acylation
443(1)
17.2.3.2 Esterification
443(1)
17.2.3.3 Oligomerization
444(1)
17.2.3.4 Oxidation
444(1)
17.2.3.5 Isomerization
444(1)
17.2.4 Crystallization
444(2)
17.3 Sonochemical Effects on Carbohydrate Depolymerization
446(2)
17.4 Effects of Ultrasound on Biotechnological Processes
448(1)
17.4.1 Depolymerization
449(1)
17.4.1.1 Simultaneous Application
450(1)
17.4.1.2 Sequential Application
451(2)
17.4.2 Other Bioprocesses
453(1)
17.4.2.1 Hydrolysis
453(1)
17.4.2.2 Enzymatic Synthesis of Carbohydrate Derivatives
454(1)
17.4.2.3 Fermentation
455(2)
17.5 Conclusions and Future Trends
457(1)
Acknowledgements
458(1)
References
458(6)
18 Effect of Ultrasound on the Physicochemical Properties of Lipids
464(21)
S. Martini
18.1 Introduction
464(1)
18.2 Background
465(1)
18.2.1 Definition of Ultrasound
465(1)
18.2.2 Mechanism of Action of HIU
466(1)
18.3 Modifying the Physical Properties of Lipids with HIU
467(1)
18.3.1 Effect on the Induction Times of Crystallization
468(1)
18.3.2 Effect on Microstructure
468(1)
18.3.3 Effect on Solid Fat Content
472(1)
18.3.4 Effect on Texture and Viscoelasticity
474(1)
18.3.5 Effect on Melting Profile
475(1)
18.3.6 Effect on Polymorphism
476(1)
18.3.7 Effect on Phase Separation
477(1)
18.3.8 Combination with Other Process Variables
477(1)
18.3.9 Effect on Oxidation
478(1)
18.3.10 Use of HIU in a Flow Cell
480(1)
18.4 Concluding Remarks and Future Research
480(2)
Acknowledgments
482(1)
References
482(3)
19 Effect of Ultrasound on Anthocyanins
485(21)
J.A. Moses
G. Rajauria
B.K. Tiwari
19.1 Introduction
485(4)
19.2 Anthocyanins: Chemistry and Sources
489(1)
19.3 Degradation of Anthocyanins
490(1)
19.4 Ultrasound-assisted Extraction and Processing of Anthocyanins
491(1)
19.5 Effect of Sonication on Anthocyanins
492(2)
19.6 Mechanism of Anthocyanin Degradation
494(2)
19.7 Kinetics of Anthocyanin Degradation
496(2)
19.8 Conclusions
498(1)
References
499(7)
Epilogue 506(2)
Index 508
About the Editors

Mar Villamiel and Antonia Montilla, Department of Bioactivity and Food Analysis, Institute of Food Science Research (CSIC-UAM), Spain

José V. Garcķa-Pérez, Juan A. Cįrcel, and Jose Benedito Analysis and Simulation of Agrofood Processes Group (ASPA), Food Technology Department, Universitat Politčcnica de Valčncia, Valencia, Spain