Atjaunināt sīkdatņu piekrišanu

E-grāmata: Ultrasound Technology for Clinical Practitioners [Wiley Online]

(Newcastle University, UK)
  • Formāts: 384 pages
  • Izdošanas datums: 16-Feb-2023
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 1119891582
  • ISBN-13: 9781119891581
Citas grāmatas par šo tēmu:
  • Wiley Online
  • Cena: 117,13 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Formāts: 384 pages
  • Izdošanas datums: 16-Feb-2023
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 1119891582
  • ISBN-13: 9781119891581
Citas grāmatas par šo tēmu:
Ultrasound Technology for Clinical Practitioners A hands-on and practical roadmap to ultrasound technology for clinical practitioners who use it every day

In Ultrasound Technology for Clinical Practitioners, distinguished medical physicist and vascular ultrasound scientist Crispian Oates delivers an accessible and practical resource written for the everyday clinical user of ultrasound. The book offers complete descriptions of the latest techniques in ultrasound, including ultrafast ultrasound and elastography, providing an up-to-date and relevant resource for educators, students, and practitioners alike.

Ultrasound Technology for Clinical Practitioners uses a first-person perspective that walks readers through a relevant and memorable story containing necessary information, simplifying retention and learning. It makes extensive use of bulleted lists, diagrams, and images, and relies on mathematics and equations only where necessary to illustrate the relationship between other factors. Physics examples come from commonly known contexts that readers can relate to their everyday lives, and additional description boxes offer optional, helpful info in some topic areas.

Readers will also find:





A thorough introduction to the foundational physics of ultrasound, as well as the propagation of the ultrasound pulse through tissue Comprehensive discussions of beam shapes, transducers, imaging techniques, and pulse echo instrumentation In-depth examination of image quality and artefacts and the principles of Doppler and colour Doppler ultrasound Fulsome treatments of measurement taking and safety and quality assurance in ultrasound

Perfect for sonographers, echocardiographers, and vascular scientists, Ultrasound Technology for Clinical Practitioners will also earn a place in the libraries of radiologists, cardiologists, emergency medicine specialists, and all other clinical users of ultrasound.
Acknowledgments xvii
List of Abbreviations
xix
Introduction 1(4)
Chapter 1 The Basic Physics of Ultrasound
5(20)
Sound Waves
5(4)
Describing Waves
9(2)
Energy in a Sound Wave
11(1)
Ultrasound Pulses
12(1)
Energy Spectrum of a Pulse
13(1)
Bandwidth
14(2)
Quality Factor
16(1)
Speed of Sound (C)
16(4)
Characteristic Acoustic Impedance, Z0
20(2)
Energy in a Sound Wave
22(1)
Decibels
23(2)
Chapter 2 The Interaction of Ultrasound with Tissue
25(14)
Reflection and Transmission at a Plane Interface
25(4)
Specular Reflection
25(2)
Reflection at an Angle and Refraction
27(2)
Poor Visualisation
29(1)
Scattering
30(4)
Total Scattered Power
31(1)
The Speckle Pattern
31(3)
Attenuation
34(3)
Attenuation Coefficient (α)
35(2)
Summary
37(1)
The Journey of the Ultrasound Pulse
37(1)
User Control
37(1)
Transmit Power
37(1)
References
38(1)
Chapter 3 Beam Shapes
39(20)
Simple Beam Shape Model
40(3)
Huygen's Wavelet Model and Diffraction
43(1)
Focusing
44(3)
Beam Forming with Transducer Arrays
47(3)
Grating Lobes
48(2)
Apodization
50(1)
Beam Steering
50(2)
Beam Shape and Beam Steering
52(1)
Electronic Focusing
52(2)
Resolution
54(4)
Axial Resolution
55(1)
Lateral Resolution
55(2)
Resolution Versus Penetration
57(1)
Clutter
58(1)
Reference
58(1)
Chapter 4 The Ultrasound Probe
59(14)
The Transducer
59(3)
Piezoelectric Effect
59(2)
Single Crystal Technology
61(1)
Resonant Frequency
62(1)
Backing Layer
62(1)
Matching Layer
63(2)
Front Face Lens
65(1)
Wide Band Transducers
65(1)
Construction of an Array
66(1)
CMUT Technology
66(2)
1-D, 1.5-D, and 2-D Arrays
68(4)
The Hanafy Lens
68(2)
1.5-D Array
70(1)
2-D Array
70(2)
References
72(1)
Chapter 5 Image Formation
73(22)
Image Modes
74(2)
A-Mode (Amplitude Mode)
74(1)
M-Mode (Motion Mode)
74(2)
B-Mode or Greyscale Image (Brightness Mode)
76(1)
Linear Image Formation
76(4)
Linear Array
76(1)
Frame Rate
77(1)
Curvilinear Array
77(1)
Phased Array
78(1)
Extended Field of View
78(1)
Panoramic View
78(2)
3D Imaging
80(2)
Hand Scanning
80(1)
Mechanical 3D Probe
80(1)
2D Matrix Array
80(1)
3D Image Display
81(1)
Cine Loop
82(1)
Endoprobes
82(2)
Choosing A Probe
84(1)
Focusing
84(2)
Transmit Focus
84(1)
Receive Focus
84(2)
Increasing Frame Rate
86(1)
Synthetic Aperture Imaging
86(1)
User Control
86(3)
Resolution/Penetration
86(3)
Ultrasound Harmonics
89(3)
Harmonic Imaging
90(1)
Pros and Cons of Harmonic Imaging
91(1)
Coded Excitation
92(2)
References
94(1)
Chapter 6 The B-Mode Scanner
95(16)
Transmission Side of a Scanner
95(1)
Beam Former
96(1)
PRF -- Pulse Repetition Frequency
96(1)
User Controls
96(1)
Transmit Power
96(1)
Depth of Focus
96(1)
Receive Side of a Scanner (Rx)
97(5)
Beam Former
97(1)
Gain
97(1)
User Controls -- Gain
98(1)
Time Gain Compensation
98(1)
Analogue to Digital Converter -- ADC
99(2)
Advantages of Digitising
101(1)
Echo Detection
101(1)
Dynamic Range and Transfer Function (Greyscale Mapping)
102(4)
Dynamic Range
103(1)
Transfer Function or Grey Scale Mapping
103(3)
Contrast Resolution
106(1)
User Controls
106(1)
Image Memory
106(1)
Frame Freeze
106(1)
Read and Write Zoom
107(1)
Read Zoom
107(1)
Write Zoom
108(1)
Image Processing
108(1)
User Control
108(3)
Exam Presets
108(1)
Measurements
109(2)
Chapter 7 Image Quality and Artefacts
111(30)
Acoustic Window
111(1)
Frame Rate: Frames Per Second (fps)
112(1)
Interlacing Scan Lines
113(1)
Interpolation -- Writing in `Extra Lines'
114(1)
Speckle
115(1)
Frame Averaging or Persistence
116(1)
User Control
117(1)
Spatial Compound Imaging
117(1)
Adaptive Filtering
118(1)
Edge Enhancement
118(1)
Contrast Resolution
118(4)
Noise in an Image
119(1)
Colour Enhancement of Grayscale Images
120(1)
Human Visual Perception
120(1)
How to Set Up a Monitor
121(1)
Image Flicker
121(1)
Ambient Lighting
121(1)
Artefacts
122(1)
Assumptions
122(1)
Speed of Sound Artefacts
122(5)
Refraction
122(1)
Axial Misplacement
123(4)
Attenuation Artefacts
127(3)
Poorly Adjusted Time Gain Control (TGC)
127(1)
Acoustic Shadowing
127(1)
Post Cystic Enhancement
128(1)
Shadowing from the Transducer Surface
129(1)
Reflection Artefacts
130(4)
Mirror Image Artefact
130(1)
Reverberation
131(1)
Reverberation Artefact
131(1)
Probe -- Interface Reverberation
131(1)
Ringdown
131(1)
Comet Tail or Ringing
132(2)
Anisotropy
134(1)
Beam Shape Artefacts
135(2)
Slice Thickness Artefact
135(1)
Side Lobes and Grating Lobes
136(1)
Temporal Artefacts
137(2)
Image Blurring
139(1)
Final Example
139(1)
References
140(1)
Chapter 8 Principles of Doppler Ultrasound
141(34)
The Doppler Effect
141(2)
The Doppler Equation
143(1)
Duplex Ultrasound
144(1)
CW Doppler
145(7)
Block Diagram of CW Doppler Instrument
146(1)
Detection of Direction of Flow
146(2)
The Doppler Waveform Display (Sonogram)
148(1)
Examples
148(1)
1 Slowly Moving Blood Flow in a Vessel
148(1)
2 Fast Moving Blood Flow in a Vessel
149(3)
CW Doppler Summary
152(1)
Pulsed Wave Doppler (PW Doppler) and Range Gating
152(8)
Detection of the Doppler Signal
153(1)
Block Diagram of Pulsed Doppler Instrument with Sonogram Display
154(1)
Aliasing
154(2)
Appearance of Aliasing on the Sonogram
156(2)
Observing Low Velocities
158(1)
PW Doppler Summary
159(1)
The PW Doppler Pulses
159(1)
Intrinsic Spectral Broadening (ISB)
160(2)
Question: What Doppler Angle Should We Use?
162(1)
User Controls
163(2)
Angle Correction
163(1)
Doppler Beam Steering
163(1)
Length and Depth of Sample Volume
163(1)
Scale
164(1)
Sweep Speed
164(1)
Baseline Offset and Invert
165(1)
Doppler Transmit Power
165(1)
Doppler Gain
165(1)
Peak Velocity Envelope
165(2)
Autotrace
166(1)
Average Velocity
167(3)
Doppler Artefacts
170(3)
Aliasing
170(1)
Intrinsic Spectral Broadening
170(1)
Wall Thump
171(1)
User Control
172(1)
Waveform Ghosting
172(1)
Shadowing
173(1)
References
173(2)
Chapter 9 Principles of Colour Doppler Ultrasound
175(28)
Autocorrelation
177(3)
Colour Scale
180(1)
Frame Rate
181(1)
User Controls
181(2)
Colour Box
181(1)
Frame Averaging
182(1)
Sampling
182(1)
CDU and the Doppler Angle
183(1)
Colour Aliasing
183(2)
User Controls
185(2)
Scale
185(1)
Invert
186(1)
Discrimination of Stationary Targets
187(1)
Imaging Small Vessels
187(1)
User Controls
188(1)
Wall Filter
188(1)
B-Mode Priority
188(1)
Power Doppler (PD)
188(2)
CDU Artefacts
190(2)
Aliasing
190(1)
Shadowing
190(2)
Wall Discrimination
192(1)
Flash Artefact
192(1)
Mirror Image
192(1)
Twinkle Artefact
192(1)
Temporal Artefact
192(1)
Colour Sensitivity
192(2)
Presets
194(1)
Colour M-Mode
194(1)
Tissue Doppler Imaging (TDI)
194(3)
Myocardial Strain Imaging
197(2)
Strain
197(1)
Strain Rate (SR)
197(1)
Using TDI to Measure Strain
198(1)
Speckle Tracking Echocardiography STE
199(3)
STE Display
201(1)
References
202(1)
Chapter 10 Making Measurements
203(22)
Accuracy
204(1)
Precision
204(1)
How Accurate or Precise Do We Need To Be?
205(1)
Reproducibility
205(1)
Systematic and Random Errors
206(1)
Random Errors
206(1)
Ultrasound Measurements in Practice
206(1)
Physical Constraints
207(2)
Scaling
207(1)
Caliper Accuracy
207(1)
Image Resolution
208(1)
Sonographer-Based Constraints
209(1)
Principles for Making Reliable Measurements
209(4)
Target Visualisation
209(1)
Frame Freeze
209(1)
Use First Interface
209(1)
Measurements Protocols
209(2)
Actual Measurements
211(1)
Factoring Variability
211(1)
Ultrafine Measurements
212(1)
Measurement of Circumference, Area, and Volume
213(3)
Direct Measurement
213(1)
Assume a Simple Shape
213(1)
Use a Simplified Model of the Target
214(1)
Slicing Models
214(1)
Surface Segmentation and Automated Methods
214(2)
Doppler Waveform Measurements
216(3)
Image/Sonogram Size
216(1)
Scale
216(1)
Gain
217(1)
Freeze the Image
217(1)
Weak Signals
217(1)
Doppler Angle
217(2)
Waveform Indices
219(2)
Pulsatility Index (PI)
219(1)
Resistance Index (RI)
220(1)
A/B Ratio
220(1)
Colour Doppler Ultrasound
221(1)
Measurement of Volume Flow Q
221(3)
Cross-Section Area A
222(1)
Average Velocity
222(2)
References
224(1)
Chapter 11 Safety and Quality Assurance
225(24)
Energy, Power, and Intensity
226(1)
Measuring Intensity
227(1)
Intensity
227(3)
Factors Affecting Damage Potential
230(1)
Thermal Effects
231(1)
Thermal Index (TI)
232(2)
TIS
233(1)
TIB
233(1)
TIC
233(1)
Transducer Self-Heating
234(1)
Nonthermal Effects
235(1)
Radiation Force
235(1)
Streaming
235(1)
Cavitation
236(3)
Mechanical Index (MI)
239(1)
ALARA
239(1)
Contrast Agents
240(1)
Clinical Risk
240(1)
Bio-effects from Ultrasound
240(1)
Quality Assurance and Routine Checks
241(1)
Suggested Routine User Checks
241(3)
Annual Service
243(1)
The Use of Test Objects
244(1)
Personal Risk Management
245(1)
WRRSI Risk Mitigation
245(1)
In Summary
246(1)
New Techniques in Ultrasound
246(1)
References
247(2)
Chapter 12 Advanced Topics
249(28)
Contrast Agents (CA)
249(2)
Behaviour of Bubbles in the Ultrasound Field
251(1)
Contrast Agent Harmonics
252(2)
Amplitude Modulation
253(1)
Pulse Inversion
254(1)
Flashing
254(1)
Advanced Micro-Bubble Techniques
255(1)
B-Flow Blood Vessel Imaging
256(4)
Doppler Measurement of Pressure Gradients
260(1)
Advanced Image Processing
261(1)
Artificial Intelligence
261(1)
Segmentation
262(1)
Examples (1--3)
262(1)
Computer-Aided Diagnosis (CAD)
263(5)
Feature Identification
266(1)
Examples
266(1)
Classification
266(1)
Deep Learning
266(2)
Diagnosis with Cad
268(1)
Examples of CAD
269(1)
Fusion Imaging
269(2)
Needle Visualisation and Guidance
271(3)
References
274(3)
Chapter 13 Ultrafast Ultrasound
277(24)
Synthetic Aperture Imaging (SA)
278(1)
Plane-Wave Beamforming
279(4)
Summary
283(1)
Speed of Sound Correction
283(3)
Benefits
286(1)
Ultrafast Doppler
286(5)
Ultrafast Colour Doppler (UFCD)
286(3)
Microvascular Imaging
289(1)
Pulsed Wave Doppler (PW)
290(1)
Vector Flow Imaging (VFI)
291(7)
The Flow Vector
291(1)
Directional Beam Forming
292(1)
Transverse Oscillation (TO)
293(3)
Display of Flow Vectors
296(1)
Vector Display
296(1)
Colour Display
296(2)
References
298(3)
Chapter 14 Elastography
301(28)
Background Theory
302(1)
Elastography
303(1)
Methods of Applying The Distorting Force
303(1)
Strain Elastography (SE)
303(4)
SE with Manual or Physiological Palpation
303(4)
User Controls
307(3)
Frequency
307(1)
Frame Rate
307(1)
Tracking Window
307(1)
Frame Reject
307(1)
Noise Reject
307(1)
Line Density
308(1)
Frame Averaging
308(1)
Dynamic Range
308(1)
Colour Map
308(1)
Colour Blend
308(2)
SE Artefacts
310(4)
Stress Concentration Artefacts
312(1)
Edge Enhancement Effects
312(1)
Appearance of Cysts
313(1)
Blue/Green/Red Artefact
314(1)
Shadowing
314(1)
Acoustic Radiation Force Impulse Imaging (ARFI Imaging)
314(2)
Pros and Cons of ARFI
315(1)
Strain Ratio
316(1)
Shear Wave Elastography (SWE)
316(4)
Background Theory
316(4)
Point SWE (PSWE)
320(2)
Supersonic Shear Imaging (SSI)
322(1)
Shear Wave Compounding
323(2)
SWE Artefacts
325(1)
Bang Artefact
325(1)
References
326(3)
Appendix 1 Knobology 329(6)
Appendix 2 Handling Equations and Decibels 335(10)
Appendix 3 The Unfocused Transducer Beam Shape 345(4)
Index 349
Crispian Oates is a Medical Physicist and Clinical Scientist in ultrasound. He helped devise the physics and technology curriculum for the Vascular Ultrasound track of the NHS Scientist Training Programme and sits on the Consortium for the Accreditation of Sonographic Education CASE. He is also a vascular ultrasound scientist at the Vascular Laboratories in Newcastle, Sunderland, and Durham in the United Kingdom.