Atjaunināt sīkdatņu piekrišanu

Uncertainty Modelling and Quality Control for Spatial Data [Mīkstie vāki]

Edited by (Wageningen Ag University), Edited by , Edited by
  • Formāts: Paperback / softback, 320 pages, height x width: 234x156 mm, weight: 539 g
  • Izdošanas datums: 29-Oct-2019
  • Izdevniecība: CRC Press
  • ISBN-10: 0367377144
  • ISBN-13: 9780367377144
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 88,52 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Paperback / softback, 320 pages, height x width: 234x156 mm, weight: 539 g
  • Izdošanas datums: 29-Oct-2019
  • Izdevniecība: CRC Press
  • ISBN-10: 0367377144
  • ISBN-13: 9780367377144
Citas grāmatas par šo tēmu:
Offers New Insight on Uncertainty Modelling





Focused on major research relative to spatial information, Uncertainty Modelling and Quality Control for Spatial Data introduces methods for managing uncertaintiessuch as data of questionable qualityin geographic information science (GIS) applications. By using original research, current advancement, and emerging developments in the field, the authors compile various aspects of spatial data quality control. From multidimensional and multi-scale data integration to uncertainties in spatial data mining, this book launches into areas that are rarely addressed.





Topics covered include:



















New developments of uncertainty modelling, quality control of spatial data, and related research issues in spatial analysis





Spatial statistical solutions in spatial data quality





Eliminating systematic error in the analytical results of GIS applications





A data quality perspective for GIS function workflow design





Data quality in multi-dimensional integration





Research challenges on data quality in the integration and analysis of data from multiple sources





A new approach for imprecision management in the qualitative data warehouse





A multi-dimensional quality assessment of photogrammetric and LiDAR datasets based on a vector approach





An analysis on the uncertainty of multi-scale representation for street-block settlement











Uncertainty Modelling and Quality Control for Spatial Data

serves university students, researchers and professionals in GIS, and investigates the uncertainty modelling and quality control in multi-dimensional data integration, multi-scale data representation, national or regional spatial data products, and new spatial data mining methods.
Preface vii
Editors ix
Contributors xi
Section I Uncertainty Modelling and Quality Control
1 Uncertainty-Related Research Issues in Spatial Analysis
3(10)
Daniel A. Griffith
David W. Wong
Yongwan Chun
2 Spatial Statistical Solutions in SDQ to Answer Agricultural Demands Based on Satellite Observations
13(14)
Alfred Stein
Muhammad Imran
Milad Mahour
3 First, Do No Harm: Eliminating Systematic Error in Analytical Results of GIS Applications
27(18)
N. Chrisman
J.-F. Girres
4 Function Workflow Design for a Geographic Information System: A Data Quality Perspective
45(24)
J.-H. Hong
M.-L. Huang
Section II Uncertainties in Multidimensional and Multiscale Data Integration
5 Data Quality in the Integration and Analysis of Data from Multiple Sources: Some Research Challenges
69(14)
J. Harding
L. Diamond
J. Goodwin
G. Hart
D. Holland
M. Pendlington
A. Radburn
6 Quality Management of Reference Geoinformation
83(18)
A. Jakobsson
A. Hopfstock
M. Beare
R. Patrucco
7 A New Approach of Imprecision Management in Qualitative Data Warehouse
101(18)
F. Amanzougarene
M. Chachoua
K. Zeitouni
8 Quality Assessment in River Network Generalization by Preserving the Drainage Pattern
119(18)
L. Zhang
E. Guilbert
Section III Quality Control for Spatial Products
9 Quality Control of DLG and Map Products
137(10)
Pei Wang
Zhiyong Lv
Libin Zhao
Xincheng Guo
10 VGI for Land Administration: A Quality Perspective
147(16)
Gerhard Navratil
Andrew U. Frank
11 Qualitative and Quantitative Comparative Analysis of the Relationship between Sampling Density and DEM Error by Bilinear and Bicubic Interpolation Methods
163(34)
Wenzhong Shi
Bin Wang
Eryong Liu
12 Automatic Method of Inspection for Deformation in Digital Aerial Imagery Based on Statistical Characteristics
197(16)
Yaohua Yi
Yuan Yuan
Hai Su
Mingjing Miao
13 Comparison of Point Matching Techniques for Road Network Matching
213(20)
A. Hackeloeer
K. Klasing
J. M. Krisp
L. Meng
Section IV Uncertainties in Spatial Data Mining
14 Toward a Collaborative Knowledge Discovery System for Enriching Semantic Information about Risks of Geospatial Data Misuse
233(22)
J. Grim
Y. Bedard
S. Roche
15 Uncertainty Management in Seismic Vulnerability Assessment Using Granular Computing Based on Neighborhood Systems
255(14)
F. Khamespanah
M.R. Delavar
M. Zare
16 Increasing the Accuracy of Classification Based on Ant Colony Algorithm
269(16)
Ming Yu
Chen-Yan Dai
Zhi-Lin Li
Index 285
Wenzhong Shi, Bo Wu, Alfred Stein