Atjaunināt sīkdatņu piekrišanu

E-grāmata: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging: 6th International Workshop, UNSURE 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 15167
  • Izdošanas datums: 02-Oct-2024
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031731587
  • Formāts - PDF+DRM
  • Cena: 130,85 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 15167
  • Izdošanas datums: 02-Oct-2024
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031731587

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed proceedings of the 6th Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, on October 10, 2024.





The 20 full papers presented in this book were carefully reviewed and selected from 28 submissions. They are organized in the following topical sections: annotation uncertainty; clinical implementation of uncertainty modelling and risk management in clinical pipelines; out of distribution and domain shift identification and management; uncertainty modelling and estimation.

.- Annotation Uncertainty.

.- Uncertainty-Aware Bayesian Deep Learning with Noisy Training Labels for Epileptic Seizure Detection.

.- Active Learning for Scribble-based Diffusion MRI Segmentation.

.- FISHing in Uncertainty: Synthetic Contrastive Learning for Genetic Aberration Detection.

.- Diagnose with Uncertainty Awareness: Diagnostic Uncertainty Encoding Framework for Radiology Report Generation.

.- Clinical implementation of uncertainty modelling and risk management in clinical pipelines.

.- Making Deep Learning Models Clinically Useful - Improving Diagnostic Confidence in Inherited Retinal Disease with Conformal Prediction.

.- GUARDIAN: Guarding Against Uncertainty and Adversarial Risks in Robot-Assisted Surgeries.

.- Quality Control for Radiology Report Generation Models via Auxiliary Auditing Components.

.- Conformal Performance Range Prediction for Segmentation Output Quality Control.

.- Holistic Consistency for Subject-level Segmentation Quality Assessment in Medical Image Segmentation.

.- Out of distribution and domain shift identification and management.

.- CROCODILE: Causality aids RObustness via COntrastive DIsentangled LEarning.

.- Image-conditioned Diffusion Models for Medical Anomaly Detection.

.- Information Bottleneck-based Feature Weighting for Enhanced Medical Image Out-of-Distribution Detection.

.- Beyond Heatmaps: A Comparative Analysis of Metrics for Anomaly Localization in Medical Images.

.- Typicality excels Likelihood for Unsupervised Out-of-Distribution Detection in Medical Imaging.

.- Evaluating Reliability in Medical DNNs: A Critical Analysis of Feature and Confidence-Based OOD Detection.

.- Uncertainty-Aware Vision Transformers for Medical Image Analysis.

.- Uncertainty modelling and estimation.

.- Efficient Precision control in Object Detection Models for Enhanced and Reliable Ovarian Follicle Counting.

.- GLANCE: Combating Label Noise using Global and Local Noise Correction for Multi-Label Chest X-ray Classification.

.- Conformal Prediction and Monte Carlo Inference for Addressing Uncertainty in Cervical Cancer Screening.

.- INFORMER- Interpretability Founded Monitoring of Medical Image Deep Learning.