Atjaunināt sīkdatņu piekrišanu

E-grāmata: Undergraduate Analysis

4.09/5 (43 ratings by Goodreads)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 65,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This is a logically self-contained introduction to analysis, suitable for students who have had two years of calculus. The book centers around those properties that have to do with uniform convergence and uniform limits in the context of differentiation and integration. Topics discussed include the classical test for convergence of series, Fourier series, polynomial approximation, the Poisson kernel, the construction of harmonic functions on the disc, ordinary differential equation, curve integrals, derivatives in vector spaces, multiple integrals, and others. One of the author's main concerns is to achieve a balance between concrete examples and general theorems, augmented by a variety of interesting exercises. Some new material has been added in this second edition, for example: a new chapter on the global version of integration of locally integrable vector fields; a brief discussion of L1-Cauchy sequences, introducing students to the Lebesgue integral; more material on Dirac sequences and families, including a section on the heat kernel; a more systematic discussion of orders of magnitude; and a number of new exercises.

This logically self-contained introduction to analysis centers around those properties that have to do with uniform convergence and uniform limits in the context of differentiation and integration.From the reviews: "This material can be gone over quickly by the really well-prepared reader, for it is one of the book's pedagogical strengths that the pattern of development later recapitulates this material as it deepens and generalizes it." --AMERICAN MATHEMATICAL SOCIETY

Recenzijas

Second Edition



S. Lang



Undergraduate Analysis



"[ A] fine book . . . logically self-contained . . . This material can be gone over quickly by the really well-prepared reader, for it is one of the books pedagogical strengths that the pattern of development later recapitulates this material as it deepens and generalizes it."AMERICAN MATHEMATICAL SOCIETY

Foreword to the First Edition v
Foreword to the Second Edition ix
PART ONE Review of Calculus 1(126)
Sets and Mappings
3(14)
Sets
3(1)
Mappings
4(4)
Natural Numbers and Induction
8(3)
Denumerable Sets
11(4)
Equivalence Relations
15(2)
Real Numbers
17(17)
Algebraic Axioms
17(4)
Ordering Axioms
21(4)
Integers and Rational Numbers
25(4)
The Completeness Axiom
29(5)
Limits and Continuous Functions
34(32)
Sequences of Numbers
34(7)
Functions and Limits
41(9)
Limits with Infinity
50(9)
Continuous Functions
59(7)
Differentiation
66(12)
Properties of the Derivative
66(4)
Mean Value Theorem
70(4)
Inverse Functions
74(4)
Elementary Functions
78(23)
Exponential
78(5)
Logarithm
83(7)
Sine and Cosine
90(5)
Complex Numbers
95(6)
The Elementary Real Integral
101(26)
Characterization of the Integral
101(3)
Properties of the Integral
104(5)
Taylor's Formula
109(7)
Asymptotic Estimates and Stirling's Formula
116(11)
PART TWO Convergence 127(154)
Normed Vector Spaces
129(31)
Vector Spaces
129(2)
Normed Vector Spaces
131(6)
n-Space and Function Spaces
137(6)
Completeness
143(8)
Open and Closed Sets
151(9)
Limits
160(33)
Basic Properties
160(10)
Continuous Maps
170(9)
Limits in Function Spaces
179(9)
Completion of a Normed Vector Space
188(5)
Compactness
193(13)
Basic Properties of Compact Sets
193(4)
Continuous Maps on Compact Sets
197(4)
Algebraic Closure of the Complex Numbers
201(2)
Relation with Open Coverings
203(3)
Series
206(40)
Basic Definitions
206(2)
Series of Positive Numbers
208(9)
Non-Absolute Convergence
217(8)
Absolute Convergence in Vector Spaces
225(4)
Absolute and Uniform Convergence
229(5)
Power Series
234(5)
Differentiation and Integration of Series
239(7)
The Integral in One Variable
246(35)
Extension Theorem for Linear Maps
246(2)
Integral of Step Maps
248(4)
Approximation by Step Maps
252(3)
Properties of the Integral
255(12)
Appendix. The Lebesgue Integral
262(5)
The Derivative
267(5)
Relation Between the Integral and the Derivative
272(3)
Interchanging Derivatives and Integrals
275(6)
PART THREE Applications of the Integral 281(88)
Approximation with Convolutions
283(8)
Dirac Sequences
283(4)
The Weierstrass Theorem
287(4)
Fourier Series
291(35)
Hermitian Products and Orthogonality
291(15)
Trigonometric Polynomials as a Total Family
306(5)
Explicit Uniform Approximation
311(6)
Pointwise Convergence
317(9)
Improper Integrals
326(27)
Definition
326(4)
Criteria for Convergence
330(6)
Interchanging Derivatives and Integrals
336(11)
The Heat Kernel
347(6)
The Fourier Integral
353(16)
The Schwartz Space
353(6)
The Fourier Inversion Formula
359(4)
An Example of Fourier Transform not in the Schwartz Space
363(6)
PART FOUR Calculus in Vector Spaces 369(194)
Functions on n-Space
371(46)
Partial Derivatives
371(8)
Differentiability and the Chain Rule
379(9)
Potential Functions
388(7)
Curve Integrals
395(10)
Taylor's Formula
405(6)
Maxima and the Derivative
411(6)
The Winding Number and Global Potential Functions
417(38)
Another Description of the Integral Along a Path
418(2)
The Winding Number and Homology
420(12)
Proof of the Global Integrability Theorem
432(6)
The Integral Over Continuous Paths
438(6)
The Homotopy Form of the Integrability Theorem
444(6)
More on Homotopies
450(5)
Derivatives in Vector Spaces
455(47)
The Space of Continuous Linear Maps
455(8)
The Derivative as a Linear Map
463(5)
Properties of the Derivative
468(5)
Mean Value Theorem
473(4)
The Second Derivative
477(10)
Higher Derivatives and Taylor's Formula
487(8)
Partial Derivatives
495(4)
Differentiating Under the Integral Sign
499(3)
Inverse Mapping Theorem
502(36)
The Shrinking Lemma
502(4)
Inverse Mappings, Linear Case
506(6)
The Inverse Mapping Theorem
512(8)
Implicit Functions and Charts
520(6)
Product Decompositions
526(12)
Ordinary Differential Equations
538(25)
Local Existence and Uniqueness
538(10)
Approximate Solutions
548(4)
Linear Differential Equations
552(5)
Dependence on Initial Conditions
557(6)
PART FIVE Multiple Integration 563(64)
Multiple Integrals
565(42)
Elementary Multiple Integration
565(13)
Criteria for Admissibility
578(3)
Repeated Integrals
581(3)
Change of Variables
584(18)
Vector Fields on Spheres
602(5)
Differential Forms
607(20)
Definitions
607(6)
Stokes' Theorem for a Rectangle
613(3)
Inverse Image of a Form
616(4)
Stokes' Formula for Simplices
620(7)
Appendix 627(8)
Index 635