Atjaunināt sīkdatņu piekrišanu

Understanding Nanoelectromechanical Quantum Circuits and Systems (NEMX) for the Internet of Things (IoT) Era [Hardback]

  • Formāts: Hardback, 232 pages, height x width: 234x156 mm, weight: 590 g
  • Izdošanas datums: 31-Oct-2019
  • Izdevniecība: River Publishers
  • ISBN-10: 8770221286
  • ISBN-13: 9788770221283
  • Hardback
  • Cena: 122,33 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 232 pages, height x width: 234x156 mm, weight: 590 g
  • Izdošanas datums: 31-Oct-2019
  • Izdevniecība: River Publishers
  • ISBN-10: 8770221286
  • ISBN-13: 9788770221283
The operational theme permeating most definitions of the IoT concept is the wireless communication of networked objects, smartsensing devices and machines, exchanging data via the Internet. In this book, a detailed look is taken at the fundamental principles of devices and techniques whose exploitation will facilitate the development of compact, power-efficient, autonomous, smart, networked sensing nodes underlying and encompassing the emerging IoT era.

The operational theme permeating most definitions of the IoT concept is the wireless communication of networked objects, in particular, smart sensing devices and machines, exchanging data via the Internet. In this book, a detailed look is taken at the fundamental principles of devices and techniques whose exploitation will facilitate the development of compact, power-efficient, autonomous, smart, networked sensing nodes underlying and encompassing the emerging IoT era.

The book provides an understanding of nanoelectromechanical quantum circuits and systems (NEMX), as exemplified by first the uncovering of their origins, impetus and motivation, and secondly by developing an understanding of their device physics, including the topics of actuation, mechanical vibration and sensing. Next the fundamentals of key devices, namely, MEMS/NEMS switches, varactors and resonators are covered, including a wide range of implementations. The book then looks at their energy supply via energy harvesting, as derived from wireless energy and mechanical vibrations. Finally, after an introduction to the fundamentals of IoT networks and nodes, the book concludes with an exploration of how the NEMX components are encroaching in a variety of emerging IoT applications.
Preface xiii
Acknowledgments xvii
List of Figures
xix
List of Tables
xxvii
List of Abbreviations
xxix
1 The Internet of Things
1(6)
1.1 Origins
1(2)
1.2 IoT Motivation/Impact
3(3)
1.3 Summary
6(1)
2 Microelectromechanical and Nanoelectromechanical Systems
7(4)
2.1 MEMS/NEMS Origins
7(1)
2.2 MEMS/NEMS Impetus/Motivation
8(2)
2.3 Summary
10(1)
3 Understanding MEMS/NEMS Device Physics
11(70)
3.1 Actuation
11(34)
3.1.1 Electrostatic Actuation
11(1)
3.1.1.1 Parallel-plate capacitor
11(3)
3.1.1.2 Electrostatically actuated cantilever beam
14(3)
3.1.1.3 Interdigitated (comb-drive) capacitor
17(1)
3.1.2 Piezoelectric Actuation
18(1)
3.1.2.1 Piezoelectric cantilever probe
19(2)
3.1.3 Casimir Actuation
21(1)
3.1.3.1 Casimir's own force calculation
22(2)
3.1.3.2 Lifshitz calculation of the casimir force
24(5)
3.1.3.3 Casimir force calculation of brown and maclay
29(2)
3.1.3.4 Casimir force calculations for arbitrary geometries
31(1)
3.1.3.4.1 Computing the casimir energy based on multipole interactions
31(2)
3.1.3.4.2 Computing the casimir force using finite-difference time-domain techniques
33(1)
3.1.3.4.3 Computing the casimir force using the framework of macroscopic quantum electrodynamics
34(3)
3.1.3.5 Corrections to ideal casimir force derivation
37(1)
3.1.4 Radiation Pressure Actuation
38(2)
3.1.4.1 Radiation pressure manipulation of particles
40(1)
3.1.4.2 Radiation pressure trapping of particles
41(1)
3.1.4.3 Radiation pressure effect on cantilever beams
42(3)
3.2 Mechanical Vibration
45(6)
3.2.1 The Single-Degree-of-Freedom System
46(2)
3.2.2 The Many-Degree-of-Freedom System
48(1)
3.2.3 Rayleigh's Method
49(2)
3.3 Thermal Noise in MEMS/NEMS
51(19)
3.3.1 Fundamental Origin of Intrinsic Noise
51(13)
3.3.1.1 Amplitude of brownian (random) displacement of cantilever beam
64(6)
3.4 Sensing
70(9)
3.4.1 The Accelerometer
70(2)
3.4.1.1 Capacitive accelerometer implementation
72(1)
3.4.1.2 Quantum mechanical tunneling accelerometer
73(3)
3.4.2 Vibration Sensors
76(3)
3.5 Summary
79(2)
4 Understanding MEMS/NEMS Devices
81(32)
4.1 Introduction
81(1)
4.2 MEMS/NEMS Switches
81(14)
4.2.1 Nanoelectromechanical Switches
84(2)
4.2.1.1 Downscaled MEMS/NEMS switches
86(6)
4.2.1.2 MEMS/NEMS switches via new materials
92(3)
4.3 MEMS/NEMS Varactors
95(4)
4.3.1 Nanoelectromechanical Varactors
95(1)
4.3.1.1 Dual-gap MEMS/NEMS varactors
95(2)
4.3.1.2 MEMS/NEMS varactors via new materials
97(2)
4.4 MEMS/NEMS Resonators
99(12)
4.4.1 Nanoelectromechanical Resonators
99(1)
4.4.1.1 Clamp-clamp RF MEMS resonators
99(2)
4.4.1.2 MEMS/NEMS resonators via new materials
101(10)
4.5 Summary
111(2)
5 Understanding MEMS/NEMS for Energy Harvesting
113(24)
5.1 Introduction
113(1)
5.2 Wireless Energy Harvesting
113(10)
5.2.1 RF-DC Conversion Circuit
116(2)
5.2.2 Resonant Amplification of Extremely Small Signals
118(5)
5.3 Mechanical Energy Harvesting
123(13)
5.3.1 Theory of Energy Harvesting from Vibrations
125(2)
5.3.1.1 Piezoelectric conversion
127(5)
5.3.1.2 Electrostatic conversion
132(4)
5.4 Summary
136(1)
6 NEMX Applications in the IoT Era
137(26)
6.1 Introduction
137(5)
6.1.1 Wireless Connectivity
137(4)
6.1.1.1 Communication protocols
141(1)
6.1.1.2 Network range
142(1)
6.2 Roots of the Internet of Things
142(2)
6.3 Applications of the Internet of Things
144(8)
6.3.1 NEMX in Smart Home IoT Applications
144(2)
6.3.2 NEMX in Wearable IoT Applications
146(1)
6.3.3 NEMX in Smart Cities IoT Applications
146(1)
6.3.4 NEMX in Smart Grid IoT Applications
147(1)
6.3.5 NEMX in Industrial Internet IoT Applications
147(1)
6.3.6 NEMX in Connected Car IoT Applications
148(2)
6.3.7 NEMX in Connected Health IoT Applications
150(1)
6.3.8 NEMX in Smart Retail IoT Applications
150(1)
6.3.9 NEMX in Smart Supply Chain IoT Applications
151(1)
6.3.10 NEMX in Smart Farming IoT Applications
151(1)
6.4 Applications in Wireless Sensor Networks
152(5)
6.4.1 NEMX-Based Radios for the IoT
154(3)
6.4.2 Agricultural Applications
157(1)
6.5 5G: Systems
157(3)
6.6 5G: Technologies
160(1)
6.6.1 Device-to-Device Communications
160(1)
6.6.2 Simultaneous Transmission/Reception
160(1)
6.6.3 mmWave/5G Frequencies for IoT
161(1)
6.7 Summary
161(2)
Appendix A MEMS Fabrication Techniques Fundamentals
163(6)
A.1 Introduction
163(1)
A.2 The Conventional IC Fabrication Process
163(1)
A.3 Bulk Micromachining
164(1)
A.4 Surface Micromachining
165(2)
A.5 Materials Systems
167(1)
A.6 Summary
168(1)
Appendix B Emerging Fabrication Technologies for the IoT: Flexible Substrates and Printed Electronics
169(10)
B.1 Flexible Substrates
169(4)
B.1.1 Device Fabrication on Flexible Substrates
171(1)
B.1.1.1 Thin-Film Transistors (TFTs)
171(1)
B.1.2 Film Bulk Acoustic Wave Resonators (FBARs)
172(1)
B.2 Printed Electronics
173(4)
B.2.1 Printing Technologies
174(1)
B.2.1.1 Contact Printing Techniques
174(1)
B.2.1.2 Non-Contact Printing Techniques
174(3)
B.3 Summary
177(2)
References 179(14)
Index 193(6)
About the Author 199
Héctor J. De Los Santos