Preface |
|
xiii | |
Acknowledgments |
|
xvii | |
|
|
xix | |
|
|
xxvii | |
|
|
xxix | |
|
|
1 | (6) |
|
|
1 | (2) |
|
1.2 IoT Motivation/Impact |
|
|
3 | (3) |
|
|
6 | (1) |
|
2 Microelectromechanical and Nanoelectromechanical Systems |
|
|
7 | (4) |
|
|
7 | (1) |
|
2.2 MEMS/NEMS Impetus/Motivation |
|
|
8 | (2) |
|
|
10 | (1) |
|
3 Understanding MEMS/NEMS Device Physics |
|
|
11 | (70) |
|
|
11 | (34) |
|
3.1.1 Electrostatic Actuation |
|
|
11 | (1) |
|
3.1.1.1 Parallel-plate capacitor |
|
|
11 | (3) |
|
3.1.1.2 Electrostatically actuated cantilever beam |
|
|
14 | (3) |
|
3.1.1.3 Interdigitated (comb-drive) capacitor |
|
|
17 | (1) |
|
3.1.2 Piezoelectric Actuation |
|
|
18 | (1) |
|
3.1.2.1 Piezoelectric cantilever probe |
|
|
19 | (2) |
|
|
21 | (1) |
|
3.1.3.1 Casimir's own force calculation |
|
|
22 | (2) |
|
3.1.3.2 Lifshitz calculation of the casimir force |
|
|
24 | (5) |
|
3.1.3.3 Casimir force calculation of brown and maclay |
|
|
29 | (2) |
|
3.1.3.4 Casimir force calculations for arbitrary geometries |
|
|
31 | (1) |
|
3.1.3.4.1 Computing the casimir energy based on multipole interactions |
|
|
31 | (2) |
|
3.1.3.4.2 Computing the casimir force using finite-difference time-domain techniques |
|
|
33 | (1) |
|
3.1.3.4.3 Computing the casimir force using the framework of macroscopic quantum electrodynamics |
|
|
34 | (3) |
|
3.1.3.5 Corrections to ideal casimir force derivation |
|
|
37 | (1) |
|
3.1.4 Radiation Pressure Actuation |
|
|
38 | (2) |
|
3.1.4.1 Radiation pressure manipulation of particles |
|
|
40 | (1) |
|
3.1.4.2 Radiation pressure trapping of particles |
|
|
41 | (1) |
|
3.1.4.3 Radiation pressure effect on cantilever beams |
|
|
42 | (3) |
|
|
45 | (6) |
|
3.2.1 The Single-Degree-of-Freedom System |
|
|
46 | (2) |
|
3.2.2 The Many-Degree-of-Freedom System |
|
|
48 | (1) |
|
|
49 | (2) |
|
3.3 Thermal Noise in MEMS/NEMS |
|
|
51 | (19) |
|
3.3.1 Fundamental Origin of Intrinsic Noise |
|
|
51 | (13) |
|
3.3.1.1 Amplitude of brownian (random) displacement of cantilever beam |
|
|
64 | (6) |
|
|
70 | (9) |
|
|
70 | (2) |
|
3.4.1.1 Capacitive accelerometer implementation |
|
|
72 | (1) |
|
3.4.1.2 Quantum mechanical tunneling accelerometer |
|
|
73 | (3) |
|
|
76 | (3) |
|
|
79 | (2) |
|
4 Understanding MEMS/NEMS Devices |
|
|
81 | (32) |
|
|
81 | (1) |
|
|
81 | (14) |
|
4.2.1 Nanoelectromechanical Switches |
|
|
84 | (2) |
|
4.2.1.1 Downscaled MEMS/NEMS switches |
|
|
86 | (6) |
|
4.2.1.2 MEMS/NEMS switches via new materials |
|
|
92 | (3) |
|
|
95 | (4) |
|
4.3.1 Nanoelectromechanical Varactors |
|
|
95 | (1) |
|
4.3.1.1 Dual-gap MEMS/NEMS varactors |
|
|
95 | (2) |
|
4.3.1.2 MEMS/NEMS varactors via new materials |
|
|
97 | (2) |
|
|
99 | (12) |
|
4.4.1 Nanoelectromechanical Resonators |
|
|
99 | (1) |
|
4.4.1.1 Clamp-clamp RF MEMS resonators |
|
|
99 | (2) |
|
4.4.1.2 MEMS/NEMS resonators via new materials |
|
|
101 | (10) |
|
|
111 | (2) |
|
5 Understanding MEMS/NEMS for Energy Harvesting |
|
|
113 | (24) |
|
|
113 | (1) |
|
5.2 Wireless Energy Harvesting |
|
|
113 | (10) |
|
5.2.1 RF-DC Conversion Circuit |
|
|
116 | (2) |
|
5.2.2 Resonant Amplification of Extremely Small Signals |
|
|
118 | (5) |
|
5.3 Mechanical Energy Harvesting |
|
|
123 | (13) |
|
5.3.1 Theory of Energy Harvesting from Vibrations |
|
|
125 | (2) |
|
5.3.1.1 Piezoelectric conversion |
|
|
127 | (5) |
|
5.3.1.2 Electrostatic conversion |
|
|
132 | (4) |
|
|
136 | (1) |
|
6 NEMX Applications in the IoT Era |
|
|
137 | (26) |
|
|
137 | (5) |
|
6.1.1 Wireless Connectivity |
|
|
137 | (4) |
|
6.1.1.1 Communication protocols |
|
|
141 | (1) |
|
|
142 | (1) |
|
6.2 Roots of the Internet of Things |
|
|
142 | (2) |
|
6.3 Applications of the Internet of Things |
|
|
144 | (8) |
|
6.3.1 NEMX in Smart Home IoT Applications |
|
|
144 | (2) |
|
6.3.2 NEMX in Wearable IoT Applications |
|
|
146 | (1) |
|
6.3.3 NEMX in Smart Cities IoT Applications |
|
|
146 | (1) |
|
6.3.4 NEMX in Smart Grid IoT Applications |
|
|
147 | (1) |
|
6.3.5 NEMX in Industrial Internet IoT Applications |
|
|
147 | (1) |
|
6.3.6 NEMX in Connected Car IoT Applications |
|
|
148 | (2) |
|
6.3.7 NEMX in Connected Health IoT Applications |
|
|
150 | (1) |
|
6.3.8 NEMX in Smart Retail IoT Applications |
|
|
150 | (1) |
|
6.3.9 NEMX in Smart Supply Chain IoT Applications |
|
|
151 | (1) |
|
6.3.10 NEMX in Smart Farming IoT Applications |
|
|
151 | (1) |
|
6.4 Applications in Wireless Sensor Networks |
|
|
152 | (5) |
|
6.4.1 NEMX-Based Radios for the IoT |
|
|
154 | (3) |
|
6.4.2 Agricultural Applications |
|
|
157 | (1) |
|
|
157 | (3) |
|
|
160 | (1) |
|
6.6.1 Device-to-Device Communications |
|
|
160 | (1) |
|
6.6.2 Simultaneous Transmission/Reception |
|
|
160 | (1) |
|
6.6.3 mmWave/5G Frequencies for IoT |
|
|
161 | (1) |
|
|
161 | (2) |
|
Appendix A MEMS Fabrication Techniques Fundamentals |
|
|
163 | (6) |
|
|
163 | (1) |
|
A.2 The Conventional IC Fabrication Process |
|
|
163 | (1) |
|
|
164 | (1) |
|
A.4 Surface Micromachining |
|
|
165 | (2) |
|
|
167 | (1) |
|
|
168 | (1) |
|
Appendix B Emerging Fabrication Technologies for the IoT: Flexible Substrates and Printed Electronics |
|
|
169 | (10) |
|
|
169 | (4) |
|
B.1.1 Device Fabrication on Flexible Substrates |
|
|
171 | (1) |
|
B.1.1.1 Thin-Film Transistors (TFTs) |
|
|
171 | (1) |
|
B.1.2 Film Bulk Acoustic Wave Resonators (FBARs) |
|
|
172 | (1) |
|
|
173 | (4) |
|
B.2.1 Printing Technologies |
|
|
174 | (1) |
|
B.2.1.1 Contact Printing Techniques |
|
|
174 | (1) |
|
B.2.1.2 Non-Contact Printing Techniques |
|
|
174 | (3) |
|
|
177 | (2) |
References |
|
179 | (14) |
Index |
|
193 | (6) |
About the Author |
|
199 | |