Atjaunināt sīkdatņu piekrišanu

E-grāmata: Understanding Satellite Navigation

(Indian Space Research Organisation (ISRO), India)
  • Formāts: PDF+DRM
  • Izdošanas datums: 19-Aug-2014
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780128001899
  • Formāts - PDF+DRM
  • Cena: 103,88 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 19-Aug-2014
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780128001899

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

After reviewing the history of navigation, this undergraduate engineering textbook introduces the architectural components of a typical satellite navigation system, the satellite signals carrying navigation data, the operation of navigation receivers, algorithms for estimating position, and differential correction techniques for reducing the effect of errors. MATLAB exercises help visualize different orbital shapes, power spectral density, the autocorrelation function of a random binary signal, BPSK modulation, positional errors, and Kalman filtering. Annotation ©2014 Ringgold, Inc., Portland, OR (protoview.com) This book explains the basic principles of satellite navigation technology with the bare minimum of mathematics and without complex equations. It helps you to conceptualize the underlying theory from first principles, building up your knowledge gradually using practical demonstrations and worked examples. A full range of MATLAB simulations is used to visualize concepts and solve problems, allowing you to see what happens to signals and systems with different configurations. Implementation and applications are discussed, along with some special topics such as Kalman Filter and Ionosphere.With this book you will learn:How a satellite navigation system worksHow to improve your efficiency when working with a satellite navigation systemHow to use MATLAB for simulation, helping to visualize conceptsVarious possible implementation approaches for the technologyThe most significant applications of satellite navigation systemsTeaches the fundamentals of satellite navigation systems, using MATLAB as a visualization and problem solving toolWorked out numerical problems are provided to aid practical understandingOn-line support provides MATLAB scripts for simulation exercises and MATLAB based solutions, standard algorithms, and PowerPoint slides

Papildus informācija

Learn the fundamentals of satellite navigation technology, backed up by practical simulations and visualizations in MATLAB
Preface XIII
Acknowledgment XV
Chapter 1 Introduction to Navigation 1(26)
1.1 Introduction
1(3)
1.1.1 Organization of this book
2(2)
1.2 Navigation
4(5)
1.2.1 History of navigation
4(4)
1.2.2 Types of navigation
8(1)
1.3 Referencing a position
9(12)
1.3.1 Reference frame
11(10)
1.4 Radio navigation system
21(4)
1.4.1 Piloting system
22(1)
1.4.2 Guidance system
23(1)
1.4.3 Dead reckoning system
24(1)
Conceptual Questions
25(1)
References
25(2)
Chapter 2 Satellite Navigation 27(22)
2.1 Satellite navigation
28(6)
2.1.1 Definition
28(1)
2.1.2 Navigation service
28(1)
2.1.3 Service parameters
29(4)
2.1.4 Categories of satellite navigation
33(1)
2.2 Architectural components
34(2)
2.3 Control segment
36(10)
2.3.1 Monitoring station
37(3)
2.3.2 Ground antenna
40(1)
2.3.3 Master control station
40(4)
2.3.4 Navigational timekeeping
44(2)
Conceptual questions
46(1)
References
47(2)
Chapter 3 Satellites in Orbit 49(34)
3.1 Kepler's laws and orbital dynamics
50(19)
3.1.1 Ellipse
50(2)
3.1.2 Elliptical orbit
52(17)
3.2 Orbital orientation relative to earth
69(4)
3.2.1 Orientation parameters
69(4)
3.3 Perturbation of satellite orbits
73(2)
3.3.1 Perturbation factors
73(1)
3.3.2 Implications for the system
74(1)
3.4 Different types of orbit
75(3)
3.5 Selection of orbital parameters
78(4)
Conceptual questions
82(1)
References
82(1)
Chapter 4 Navigation Signals 83(72)
4.1 Navigation signal
84(1)
4.1.1 Generic structure
84(1)
4.2 Navigation data
85(15)
4.2.1 Data content
85(3)
4.2.2 Data structure
88(1)
4.2.3 Data spectrum
89(4)
4.2.4 Error detection and correction
93(6)
4.2.5 Addendum
99(1)
4.3 Ranging codes
100(29)
4.3.1 Pseudo random noise sequence
101(22)
4.3.2 Effect of multiplying ranging code on signal
123(2)
4.3.3 Navigational use of the effects
125(4)
4.4 Encryption
129(3)
4.4.1 Secrecy requirements
131(1)
4.4.2 Authenticity requirements
131(1)
4.5 Multiple access
132(3)
4.5.1 Code division multiple access
132(2)
4.5.2 Frequency division multiple access
134(1)
4.6 Digital modulation
135(16)
4.6.1 Carrier wave
135(1)
4.6.2 Modulation techniques
136(10)
4.6.3 Alt-BOC modulation
146(5)
4.7 Typical link calculations
151(1)
Conceptual questions
152(1)
References
152(3)
Chapter 5 Navigation Receiver 155(62)
5.1 Navigation receiver
156(10)
5.1.1 Generic receiver
156(2)
5.1.2 Types of user receiver
158(2)
5.1.3 Measurements, processing and estimations
160(3)
5.1.4 Noise in a receiver
163(3)
5.2 Functional units of user receivers
166(48)
5.2.1 Typical architectures
166(1)
5.2.2 RF interface
167(2)
5.2.3 Front end
169(10)
5.2.4 Baseband signal processor
179(23)
5.2.5 Pseudo ranging
202(9)
5.2.6 Navigation processor
211(3)
Conceptual questions
214(1)
References
214(3)
Chapter 6 Navigation Solutions 217(26)
6.1 Fundamental concepts
217(5)
6.2 Generation of observation equation
222(1)
6.3 Linearization
223(3)
6.4 Solving for position
226(6)
6.5 Other methods for position fixing
232(7)
6.5.1 Solving range equations without linearization
232(5)
6.5.2 Other methods
237(2)
6.6 Velocity estimation
239(2)
Conceptual questions
241(1)
References
241(2)
Chapter 7 Errors and Error Corrections 243(38)
7.1 Scope of errors
244(3)
7.1.1 Sources of errors
246(1)
7.2 Control segment errors
247(4)
7.2.1 Ephemeris errors
247(4)
7.3 Space segment errors
251(1)
7.3.1 Satellite clock error
251(1)
7.3.2 Code bias
252(1)
7.4 Propagation and user segment errors
252(16)
7.4.1 Propagation errors
252(13)
7.4.2 User segment error
265(1)
7.4.3 Overall effect
266(2)
7.5 Techniques of error mitigation
268(4)
7.5.1 Reference-based correction
268(1)
7.5.2 Direct estimation of errors
269(3)
7.6 Effect of errors on positioning
272(5)
7.6.1 Dilution of precision
274(2)
7.6.2 Horizontal and vertical dilution of precision
276(1)
7.6.3 Weighted least squares solution
277(1)
7.7 Error budget and performances
277(1)
Conceptual questions
278(1)
References
278(3)
Chapter 8 Differential Positioning 281(32)
8.1 Differential positioning
282(8)
8.1.1 Overview of differential corrections
282(4)
8.1.2 Error review
286(1)
8.1.3 Classifications of differential positioning
287(3)
8.2 Differential correction techniques
290(17)
8.2.1 Code-based methods
290(12)
8.2.2 Carrier phase-based methods
302(5)
8.3 Implementation of differential systems
307(4)
Conceptual questions
311(1)
References
312(1)
Chapter 9 Special Topics 313(38)
9.1 Kalman filter
314(22)
9.1.1 Introduction to the Kalman filter
314(2)
9.1.2 Kalman filter basics
316(3)
9.1.3 Derivation of the filter equations
319(7)
9.1.4 Use of the Kalman filter
326(10)
9.2 The ionosphere
336(12)
9.2.1 Basic structure of the ionosphere
336(2)
9.2.2 Equatorial ionosphere
338(3)
9.2.3 Models of the ionosphere
341(3)
9.2.4 Other methods of estimating the ionosphere
344(4)
Conceptual questions
348(1)
References
349(2)
Chapter 10 Applications 351(22)
10.1 Introduction
351(2)
10.1.1 Advantages over other navigation systems
352(1)
10.2 Applications overview
353(9)
10.2.1 Applications architecture
353(1)
10.2.2 Applications roundup
354(8)
10.3 Specific applications
362(9)
10.3.1 Attitude determination
363(3)
10.3.2 Time transfer
366(5)
References
371(2)
Appendix 1 Satellite Navigational Systems 373(8)
Index 381
Dr. Rajat Acharya works as a Scientist at the Space Applications Centre, a unit of the Indian Space Research Organisation (ISRO). He is involved with the Indian Satellite Navigation program of GAGAN and IRNSS for more than a decade with pertinent contributions in ionospheric modelling. He is also a Faculty member at the Centre for Space Science and Technology Education Asia Pacific, where he teaches on the M.Tech course on Satellite Communications and Satellite Navigation. He serves as a visiting Professor at Gujurat University, teaching on the PG Diploma course on Geo-informatics and Satellite Communications. He was also a member of the working group on models and algorithms from ISRO in the second meeting of the International Committee on Global Navigation Satellite System (ICG).