Atjaunināt sīkdatņu piekrišanu

Unitals in Projective Planes 2008 ed. [Hardback]

  • Formāts: Hardback, 196 pages, height x width: 235x155 mm, weight: 1040 g, 29 Illustrations, black and white; XII, 196 p. 29 illus., 1 Hardback
  • Sērija : Springer Monographs in Mathematics
  • Izdošanas datums: 28-Aug-2008
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 0387763643
  • ISBN-13: 9780387763644
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 196 pages, height x width: 235x155 mm, weight: 1040 g, 29 Illustrations, black and white; XII, 196 p. 29 illus., 1 Hardback
  • Sērija : Springer Monographs in Mathematics
  • Izdošanas datums: 28-Aug-2008
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 0387763643
  • ISBN-13: 9780387763644
Citas grāmatas par šo tēmu:
This book is a monograph on unitals embedded in ?nite projective planes. Unitals are an interesting structure found in square order projective planes, and numerous research articles constructing and discussing these structures have appeared in print. More importantly, there still are many open pr- lems, and this remains a fruitful area for Ph.D. dissertations. Unitals play an important role in ?nite geometry as well as in related areas of mathematics. For example, unitals play a parallel role to Baer s- planes when considering extreme values for the size of a blocking set in a square order projective plane (see Section 2.3). Moreover, unitals meet the upper bound for the number of absolute points of any polarity in a square order projective plane (see Section 1.5). From an applications point of view, the linear codes arising from unitals have excellent technical properties (see 2 Section 6.4). The automorphism group of the classical unitalH =H(2,q ) is 2-transitive on the points ofH, and so unitals are of interest in group theory. In the ?eld of algebraic geometry over ?nite ?elds,H is a maximal curve that contains the largest number of F -rational points with respect to its genus, 2 q as established by the Hasse-Weil bound.
Preface vii
Preliminaries
1(20)
Affine and Projective Geometries
1(7)
Finite Fields
8(1)
Quadrics in Low Dimensions
9(3)
Ovals and Ovoids
12(1)
Some Linear Algebra
13(8)
Hermitian Curves and Unitals
21(12)
Nondegenerate Hermitian Curves
21(3)
Degenerate Hermitian Curves and Baer Sublines
24(3)
Unitals
27(6)
Translation Planes
33(26)
Translation Planes
33(1)
Derivation
34(2)
Spreads
36(5)
The Bruck-Bose Representation
41(18)
The Bruck-Bose Construction
41(2)
Baer Subplanes and Baer Sublines in Bruck-Bose
43(9)
Derivation in Bruck-Bose
52(1)
Coordinates in Bruck-Bose
53(6)
Unitals Embedded in Desarguesian Planes
59(30)
Buekenhout Constructions
59(7)
Unitals Embedded in PG (2, q2)
66(23)
The Odd Characteristic Case
66(13)
The Even Characteristic Case
79(10)
Unitals Embedded in Non-Desarguesian Planes
89(20)
Unitals in Hall Planes
89(8)
Unitals in Semifield Planes
97(4)
Unitals in Nearfield Planes
101(2)
Unitals Embedded in Nontranslation Planes
103(6)
Figueroa Plane
103(2)
Hughes Plane
105(4)
Combinatorial Questions and Associated Configurations
109(24)
Intersection Problems
109(8)
Spreads and Packings
117(4)
Related Combinatorial Structures
121(6)
Inversive Planes
121(2)
Arcs
123(4)
Unitals and Codes
127(6)
Characterization Results
133(34)
Characterizations of Unitals via Baer Sublines
133(3)
Proofs of Results from Section 7.1
136(12)
Other Configurational Characterizations
148(16)
Tallini Scafati Characterizations
148(5)
Characterizations Using Feet
153(8)
Characterizations Using O'Nan Configurations
161(3)
Characterizations Using the Quadratic Extension PG (4, q2)
164(1)
The Bose Representation of PG (2, q2) in PG (5, q)
164(2)
Group Theoretic Characterizations
166(1)
Open Problems
167(4)
Nomenclature of Unitals 171(2)
Group Theoretic Characterizations of Unitals 173(4)
References 177(10)
Notation Index 187(2)
Index 189