Atjaunināt sīkdatņu piekrišanu

E-grāmata: Unitary Representations of Groups, Duals, and Characters

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 178,83 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Unitary representations of groups play an important role in many subjects, including number theory, geometry, probability theory, partial differential equations, and quantum mechanics. This monograph focuses on dual spaces associated to a group, which are spaces of building blocks of general unitary representations. Special attention is paid to discrete groups for which the unitary dual, the most common dual space, has proven to be not useful in general and for which other duals spaces have to be considered, such as the primitive dual, the normal quasi-dual, or spaces of characters. The book offers a detailed exposition of these alternative dual spaces and covers the basic facts about unitary representations and operator algebras needed for their study. Complete and elementary proofs are provided for most of the fundamental results that up to now have been accessible only in original papers and appear here for the first time in textbook form. A special feature of this monograph is that the theory is systematically illustrated by a family of examples of discrete groups for which the various dual spaces are discussed in great detail: infinite dihedral group, Heisenberg groups, affine groups of fields, solvable Baumslag-Solitar group, lamplighter group, and general and special linear groups. The book will appeal to graduate students who wish to learn the basics facts of an important topic and provides a useful resource for researchers from a variety of areas. The only prerequisites are a basic background in group theory, measure theory, and operator algebras.
Foreword ix
Acknowledgments xi
Introduction 1(12)
Representation theory of finite groups
1(1)
Representations of compact groups and abelian groups
2(2)
Primitive dual and locally compact groups of type I
4(1)
The normal quasi-dual of a locally compact group
5(1)
Characters of a locally compact group
6(1)
Thoma's dual space
7(1)
Historical comments on dual spaces of groups
7(3)
Overview
10(3)
Chapter 1 Unitary dual and primitive dual
13(54)
1.A Definition of the unitary dual
13(6)
1.B Functions of positive type and GNS construction
19(8)
1.C Weak containment and Fell topology for representations of topological groups
27(5)
1.D Topological properties of the dual of a group
32(6)
1.E Primitive dual of a topological group
38(2)
1.F Induced representations, irreducibility, and equivalence
40(12)
1.G On decomposing representations into irreducible representations
52(7)
1.H On decomposable and diagonalisable operators
59(4)
1.I Direct integrals of von Neumann algebras
63(4)
Chapter 2 Representations of locally compact abelian groups
67(28)
2.A Canonical representations of abelian groups
67(6)
2.B Canonical decomposition of representations of abelian groups
73(7)
2.C The SNAG Theorem
80(5)
2.D Containment and weak containment in terms of projection-valued measures
85(3)
2.E Canonical decomposition of projection-valued measures
88(1)
2.F Applying the SNAG Theorem to nonabelian groups
89(6)
Chapter 3 Examples of irreducible representations
95(28)
3.A Infinite dihedral group
95(4)
3.B Two-step nilpotent groups
99(11)
3.C The affine group of a field
110(4)
3.D Solvable Baumslag--Solitar groups
114(4)
3.E Lamplighter group
118(1)
3.F General linear groups
119(2)
3.G Some nondiscrete examples
121(2)
Chapter 4 Finite-dimensional irreducible representations
123(24)
4.A Finite-dimensional irreducible representations of some semi-direct products
123(3)
4.B All finite-dimensional irreducible representations for some groups
126(6)
4.C Classes of groups in terms of finite-dimensional representations
132(15)
Chapter 5 Describing all irreducible representations of some semi-direct products
147(22)
5.A Constructing some irreducible representations
147(2)
5.B Cocycles over measurable group actions
149(2)
5.C Cocycles with values in the unitary group of a Hilbert space
151(4)
5.D Constructing all irreducible representations
155(7)
5.E Identifying induced representations
162(3)
5.F On the existence of infinite nonatomic ergodic invariant measures
165(4)
Chapter 6 Types for representations, quasi-duals, groups of type I
169(42)
6.A Comparing representations, quasi-equivalence
170(6)
6.B Group representations and von Neumann algebras
176(16)
6.C The quasi-dual of a topological group
192(4)
6.D Groups of type I
196(4)
6.E A class of groups of type I
200(11)
Chapter 7 Non type I groups
211(20)
7.A A class of non type I groups
211(3)
7.B Operator algebras, traces, and types
214(5)
7.C Types of group representations
219(2)
7.D Types of representations of discrete groups
221(6)
7.E On types of representations of locally compact groups
227(1)
7.F Non type I factor representations and irreducible representations
228(3)
Chapter 8 Representations of C*-algebras and of LC groups, the Glimm Theorem
231(32)
8.A Spectrum and primitive ideal space of a C*-algebra
232(10)
8.B C*-algebras and representations of LC groups
242(4)
8.C Functorial properties of group C*-algebras
246(8)
8.D Second-countable and σ-compact LC groups
254(2)
8.E The central character of a representation, of a primitive ideal
256(1)
8.F Characterization of type I groups: The Glimm Theorem
257(2)
8.G The von Neumann algebra of a group representation
259(1)
8.H Variants
260(3)
Chapter 9 Examples of primitive duals
263(34)
9.A A weak containment result for induced representations
263(2)
9.B Two-step nilpotent groups
265(6)
9.C Affine groups of infinite fields
271(1)
9.D Solvable Baumslag--Solitar groups
272(3)
9.E Lamplighter group
275(1)
9.F General and special linear groups
276(12)
9.G On the noninjectivity of the map from the dual to the primitive dual
288(2)
9.H Borel comparison for duals of groups
290(7)
Chapter 10 Normal quasi-dual and characters
297(22)
10.A Traces and Hilbert algebras
297(10)
10.B The standard representation of a semi-finite von Neumann algebra
307(1)
10.C Group representations associated with traces
308(4)
10.D Normal factor representations and characters
312(7)
Chapter 11 Finite characters and Thoma's dual
319(12)
11.A Factor representations of finite type and finite characters
319(1)
11.B GNS Construction for traces on groups
320(4)
11.C Thoma's dual
324(4)
11.D Characters and primitive duals
328(3)
Chapter 12 Examples of Thoma's duals
331(22)
12.A Two-step nilpotent groups
331(5)
12.B Affine groups of infinite fields
336(2)
12.C Solvable Baumslag--Solitar groups
338(3)
12.D Lamplighter group
341(5)
12.E General linear groups
346(7)
Chapter 13 The group measure space construction
353(20)
13.A Construction of factors of different types
353(12)
13.B Ergodic group actions without invariant measure
365(8)
Chapter 14 Construction of factor representations for some semi-direct products
373(24)
14.A Crossed product von Neumann algebras for semi-direct products
373(3)
14.B Some factor representations of semi-direct products
376(1)
14.C Some normal factor representations
377(6)
14.D The von Neumann algebra of the regular representation as a crossed product
383(4)
14.E Examples of normal factor representations
387(10)
Chapter 15 Separating families of finite type representations
397(24)
15.A Finite type representations and bi-invariant metrics
397(2)
15.B Groups for which finite type representations are separating
399(2)
15.C Locally compact groups with a finite von Neumann algebra
401(2)
15.D Connected and totally disconnected LC groups
403(2)
15.E Faithful traces on group C*-algebras
405(11)
15.F Traces and Invariant Random Subgroups
416(5)
Appendix
421(26)
A.1 Topology
421(3)
A.2 Borel spaces
424(1)
A.3 Measures on Borel spaces and σ-finiteness
425(4)
A.4 Radon measures on locally compact spaces
429(2)
A.5 Groups and actions
431(4)
A.6 Locally compact groups
435(2)
A.7 Locally compact abelian groups and duality
437(3)
A.8 Hilbert spaces and operators
440(1)
A.9 Projection-valued measures
441(1)
A.10 C*-algebras
442(1)
A.11 Von Neumann algebras
443(4)
Bibliography 447(16)
Notation Index 463(4)
Index 467
Bachir Bekka, IRMAR, Universite de Rennes 1, France, and Pierre de la Harpe, Universite de Geneve, Switerzerland