Atjaunināt sīkdatņu piekrišanu

Unmanned Rotorcraft Systems [Hardback]

  • Formāts: Hardback, 270 pages, height x width: 235x155 mm, weight: 608 g, XIX, 270 p., 1 Hardback
  • Sērija : Advances in Industrial Control
  • Izdošanas datums: 02-Jun-2011
  • Izdevniecība: Springer London Ltd
  • ISBN-10: 0857296345
  • ISBN-13: 9780857296344
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 154,01 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 181,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 270 pages, height x width: 235x155 mm, weight: 608 g, XIX, 270 p., 1 Hardback
  • Sērija : Advances in Industrial Control
  • Izdošanas datums: 02-Jun-2011
  • Izdevniecība: Springer London Ltd
  • ISBN-10: 0857296345
  • ISBN-13: 9780857296344
Citas grāmatas par šo tēmu:

Unmanned Rotorcraft Systems explores the research and development of fully-functional miniature UAV (unmanned aerial vehicle) rotorcraft, and provides a complete treatment of the design of autonomous miniature rotorcraft UAVs. The unmanned system is an integration of advanced technologies developed in communications, computing, and control areas, and is an excellent testing ground for trialing and implementing modern control techniques. Included are detailed expositions of systematic hardware construction, software systems integration, aerodynamic modeling; and automatic flight control system design.

Emphasis is placed on the cooperative control and flight formation of multiple UAVs, vision-based ground target tracking, and landing on moving platforms. Other issues such as the development of GPS-less indoor micro aerial vehicles and vision-based navigation are also discussed in depth: utilizing the vision-based system for accomplishing ground target tracking, attacking and landing, cooperative control and flight formation of multiple unmanned rotorcraft; and future research directions on the related areas.



This book explores the research and development of fully-functional miniature rotorcraft unmanned aerial vehicles (UAV). It also provides a complete treatment of their design and examines possible future research directions.
1 Introduction
1(22)
1.1 Introduction
1(1)
1.2 Brief History of Rotorcraft
2(4)
1.3 Essential Hardware Components
6(5)
1.3.1 RC Rotorcraft
6(2)
1.3.2 Avionic System
8(2)
1.3.3 Manual Backup
10(1)
1.3.4 Ground Control Station
11(1)
1.4 Software Design and Integration
11(3)
1.4.1 Avionic Real-Time Software System
11(2)
1.4.2 Ground Control Station Software Structure
13(1)
1.5 Flight Dynamics Modeling
14(1)
1.5.1 First-Principles Approach
14(1)
1.5.2 System and Parameter Identification
15(1)
1.6 Flight Control Systems
15(1)
1.7 Application Examples
16(3)
1.8 Preview of Each
Chapter
19(4)
2 Coordinate Systems and Transformations
23(12)
2.1 Introduction
23(1)
2.2 Coordinate Systems
23(5)
2.2.1 Geodetic Coordinate System
24(1)
2.2.2 Earth-Centered Earth-Fixed Coordinate System
25(1)
2.2.3 Local North-East-Down Coordinate System
26(1)
2.2.4 Vehicle-Carried North-East-Down Coordinate System
27(1)
2.2.5 Body Coordinate System
27(1)
2.3 Coordinate Transformations
28(7)
2.3.1 Fundamental Knowledge
28(3)
2.3.2 Coordinate Transformations
31(4)
3 Platform design and Construction
35(24)
3.1 Introduction
35(1)
3.2 Virtual Design Environment Selection
35(1)
3.3 Hardware Components Selection
36(11)
3.3.1 RC Helicopter
37(2)
3.3.2 Flight Control Computer
39(1)
3.3.3 Navigation Sensors
40(2)
3.3.4 Peripheral Sensors
42(1)
3.3.5 Fail-Safe Servo Controller
42(1)
3.3.6 Wireless Modem
43(1)
3.3.7 Batteries
44(1)
3.3.8 Vision Computer
44(1)
3.3.9 Vision Sensor
45(1)
3.3.10 Frame Grabber
45(1)
3.3.11 Servo Mechanism
46(1)
3.3.12 Video Transmitter and Receiver
46(1)
3.3.13 Manual Control
47(1)
3.3.14 Ground Control Station
47(1)
3.4 Avionic System Design and Integration
47(6)
3.4.1 Layout Design
48(1)
3.4.2 Anti-vibration Design
48(4)
3.4.3 Power Supply Design
52(1)
3.4.4 Shielding Design
53(1)
3.5 Performance Evaluation
53(6)
4 Software Design and Integration
59(24)
4.1 Introduction
59(1)
4.2 Onboard Software System
60(12)
4.2.1 Framework Design
60(2)
4.2.2 Task Management
62(4)
4.2.3 Implementation of Automatic Control
66(3)
4.2.4 Emergency Handling
69(2)
4.2.5 Vision Processing Software Module
71(1)
4.3 Ground Control Station Software
72(7)
4.3.1 Framework of Ground Station Software Module
73(3)
4.3.2 3D View Development
76(3)
4.4 Software Evaluation
79(4)
5 Measurement Signal Enhancement
83(14)
5.1 Introduction
83(1)
5.2 Extended Kalman Filtering
84(2)
5.3 Dynamics Models of the GPS-Aided AHRS
86(3)
5.3.1 AHRS Dynamics Model
86(2)
5.3.2 INS Dynamics Model
88(1)
5.4 Design of Extended Kalman Filters
89(4)
5.4.1 EKF for AHRS with Accelerometer Measurement
90(1)
5.4.2 EKF for AHRS with Magnetometer Measurement
91(1)
5.4.3 EKF for INS
92(1)
5.5 Performance Evaluation
93(4)
6 Flight Dynamics modeling
97(40)
6.1 Introduction
97(1)
6.2 Model Structure
98(13)
6.2.1 Kinematics
98(3)
6.2.2 Rigid-Body Dynamics
101(6)
6.2.3 Main Rotor Flapping Dynamics
107(3)
6.2.4 Yaw Rate Feedback Controller
110(1)
6.3 Parameter Determination
111(16)
6.3.1 Direct Measurement
111(1)
6.3.2 Ground Tests
112(6)
6.3.3 Estimation Based on Wind-Tunnel Data
118(1)
6.3.4 Flight Test
119(7)
6.3.5 Fine Tuning
126(1)
6.4 Model Validation
127(1)
6.5 Flight Envelope Determination
128(9)
7 Inner-Loop Flight Control
137(24)
7.1 Introduction
137(1)
7.2 H∞ Control Technique
138(6)
7.3 Inner-Loop Control System Design
144(17)
7.3.1 Model Linearization
145(1)
7.3.2 Problem Formulation
146(2)
7.3.3 Selection of Design Specifications
148(1)
7.3.4 H∞ Control Law
149(2)
7.3.5 Performance Evaluation
151(10)
8 Outer-Loop Flight Control
161(18)
8.1 Introduction
161(1)
8.2 Robust and Perfect Tracking Control
162(4)
8.3 Outer-Loop Control System Design
166(6)
8.4 Performance Evaluation
172(7)
9 Flight Simulation and Experiment
179(26)
9.1 Introduction
179(1)
9.2 Flight Scheduling
180(6)
9.2.1 Depart/Abort (Forward Flight)
180(1)
9.2.2 Hover
181(1)
9.2.3 Depart/Abort (Backward Flight)
181(1)
9.2.4 Hovering Turn
182(1)
9.2.5 Vertical Maneuver
182(1)
9.2.6 Lateral Reposition
183(1)
9.2.7 Turn-to-Target
184(1)
9.2.8 Slalom
184(1)
9.2.9 Pirouette
185(1)
9.2.10 MTE Concatenation
186(1)
9.3 Hardware-in-the-Loop Simulation Setup
186(15)
9.4 Simulation and Flight Test Results
201(4)
10 Flight Formation of multiple UAVs
205(18)
10.1 Introduction
205(2)
10.2 Leader-Follower Formation
207(3)
10.2.1 Coordinate Systems in Formation Flight
207(2)
10.2.2 Kinematics Model
209(1)
10.3 Collision Avoidance
210(4)
10.4 Flight Test Results
214(9)
11 Vision-Based Target Following
223(32)
11.1 Introduction
223(1)
11.2 Coordinate Frames Used in Vision Systems
224(1)
11.3 Camera Calibration
225(5)
11.3.1 Camera Model
226(1)
11.3.2 Intrinsic Parameter Estimation
227(2)
11.3.3 Distortion Compensation
229(1)
11.3.4 Simplified Camera Model
230(1)
11.4 Vision-Based Ground Target Following
230(21)
11.4.1 Target Detection
231(5)
11.4.2 Image Tracking
236(8)
11.4.3 Target Following Control
244(7)
11.5 Experimental Results
251(4)
References 255(8)
Index 263
Guowei Cai's research area is the development of unmanned aerial systems, aerodynamic modeling and flight control systems.

Ben M. Chen's research areas include the development of unmanned systems, robust and non-linear control, and systems theory and control applications.

Tong H. Lee's main research foci are in unmanned aerial systems, adaptive control systems, knowledge-based control and intelligent motion control.