Atjaunināt sīkdatņu piekrišanu

E-grāmata: Unsaturated Soil Mechanics with Probability and Statistics

(Kagoshima University, Japan), (Kagoshima University, Japan)
  • Formāts: 188 pages
  • Izdošanas datums: 09-Aug-2019
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781000300895
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 56,34 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 188 pages
  • Izdošanas datums: 09-Aug-2019
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781000300895
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Soil is fundamentally a multi-phase material consisting of solid particles, water and air. In soil mechanics and geotechnical engineering it is widely treated as an elastic, elastoplastic or visco-elastoplastic material, and consequently regarded as a continuum body.

However, this book explores an alternative approach, considering soil as a multi-phase and discrete material and applying basic Newtonian mechanics rather than analytical mechanics. It applies microscopic models to the solid phase and fluid phases, and then introduces probability theory and statistics to derive average physical quantities which correspond to the soils macroscopic physical properties such as void ratio and water content.

This book is particularly focused on the mechanical behaviour of dry, partially saturated and full saturated sandy soil, as much of the physicochemical microscopic characteristic of clayey soil is still not clear. It explores the inter-particle forces at the point of contact of soil particles and the resultant inter-particle stresses, instead of the total stress and effective stress which are studied in mainstream soil mechanics. Deformation and strength behaviour, soil-water characteristic curves, and permeability coefficients of water and air are then derived simply from grain size distribution, soil particle density, void ratio and water content.

A useful reference for consultants, professional engineers, researchers and public sector organisations involved in unsaturated soil tests. Advanced undergraduate and postgraduate students on Unsaturated Soil Mechanics courses will also find it a valuable text to study.
Preface xi
Acknowledgments xiii
Authors xv
1 Introduction
1(6)
1.1 Brief history of mechanics leading to path of current soil mechanics
1(2)
1.2 Scope of this book
3(2)
References
5(2)
2 Review of probability theory and statistics
7(20)
2.1 Hierarchy of population, sample population, and sample
7(1)
2.2 Sample points in sample space
8(2)
2.3 Random variables and probability distribution
10(1)
2.4 Parameters of probability distribution
11(3)
2.4.1 Mean value and variance
11(3)
2.4.2 Coefficient of variation
14(1)
2.5 Normal distribution and logarithmic normal distribution
14(6)
2.5.1 Normal distribution
14(1)
2.5.2 Logarithmic normal distribution
15(1)
2.5.3 Relations between mean values and variances of logarithmic normal distribution expressed by linear scale and logarithmic scale
16(4)
2.6 Regression analysis
20(4)
2.6.1 Linear regression analysis
20(2)
2.6.2 Non-linear regression analysis
22(1)
2.6.2.1 Normal distribution
22(1)
2.6.2.2 Logarithmic normal distribution
23(1)
2.7 Markov chain
24(3)
3 Microscopic models of soil using probability distributions
27(18)
3.1 Macroscopic physical quantities of saturated-unsaturated soil and their phase diagram
27(5)
3.2 Microscopic probabilistic models of solid, gas, and liquid phases
32(13)
3.2.1 Elementary particulate body (EPB)
32(2)
3.2.2 Modeling of an elementary particulate body (EPB)
34(2)
3.2.3 Modeling of particulate soil structure (solid phase)
36(2)
3.2.4 Modeling of pore structure (gas and liquid phases)
38(1)
3.2.4.1 Pore size distribution
38(2)
3.2.4.2 Distribution of predominant flow direction
40(1)
3.2.4.3 Estimation of Xv from void ratio
41(1)
3.2.4.4 Estimation of threshold value dw from water content
42(2)
3.2.4.5 Summary
44(1)
References
44(1)
4 Microscopic physical quantities derived from void ratio and probability distributions
45(14)
4.1 Number of soil particles per unit volume
45(2)
4.2 Characteristic length
47(6)
4.2.1 Brief review of microscopic interpretation of effective stress used in the conventional saturated soil mechanics
47(2)
4.2.2 Derivation of characteristic length
49(4)
4.3 Numbers of contact points per unit volume and unit area
53(3)
4.4 Calculation of Nprt, Dcha, Ncv, and Nca for simple cubic packing of uniform spheres
56(2)
4.4.1 Nprl and void ratio derived from geometrical relation of simple cubic packing
56(1)
4.4.2 Calculation of Nprt
57(1)
4.4.3 Calculation of Dchj
57(1)
4.4.4 Calculation of Ncv and Nca
58(1)
References
58(1)
5 Inter-particle force vectors and inter-particle stress vectors
59(38)
5.2 Notation of inter-particle force vector and inter-particle stress vector
59(1)
5.2 Inter-particle force vector at a contact point and inter-particle stress vector on a Plane
60(3)
5.2.1 Inter-particle force vector
60(1)
5.2.2 Inter-particle stress vector
61(2)
5.3 Inter-particle force vector and inter-particle stress vector due to gravitational force
63(8)
5.3.1 Inter-particle force vector and inter-particle stress vector under dry conditions
63(2)
5.3.2 Inter-particle stress vector and pore water pressure under hydrostatic conditions
65(1)
5.3.2.1 Archimedes' principle
65(3)
5.3.2.2 Inter-particle stress vector and pore water pressure
68(3)
5.4 Inter-particle force vector and inter-particle stress vector due to seepage force
71(13)
5.4.1 Bernoulli's principle
71(7)
5.4.2 Seepage force
78(1)
5.4.2.1 Definition
78(1)
5.4.2.2 Simple example
79(2)
5.4.3 Inter-particle force vector and inter-particle stress vector under hydrodynamic conditions
81(3)
5.5 Inter-particle force vector and inter-particle stress vector due to surface tension
84(5)
5.5.1 Capillary rise and suction due to surface tension
84(1)
5.5.2 Two-particles' model
85(3)
5.5.3 Inter-particle force vector and inter-particle stress vector derived from the two-particles' model
88(1)
5.6 Inter-particle force vector and inter-particle stress vector due to external force
89(5)
5.6.1 Mohr's stress circle
89(3)
5.6.2 Inter-particle force vector and inter-particle stress vector derived from Mohr's stress circle
92(2)
5.7 Summary for normal and tangential components of inter-particle stress vector
94(3)
6 Modeling of pore water retention by elementary particulate model (EPM)
97(16)
6.1 Soil suction
97(1)
6.2 Modeling of soil water characteristic curve
98(2)
6.3 Modeling of hysteresis of soil water characteristic curve
100(8)
6.3.1 Ink-bottle model
100(2)
6.3.2 Main drying curve (MDC) and main wetting curve (MWC)
102(2)
6.3.3 Scanning drying curve (SDC) and scanning wetting curve (SWC)
104(4)
6.4 Correction of pore size distribution for soil water characteristic curve
108(4)
6.4.1 Correction method for soil water characteristic curve
108(1)
6.4.2 Parallel translation index Ipts for soil water characteristic curve
108(4)
References
112(1)
7 Modeling of pore water and pore air flows by elementary particulate model (EPM)
113(18)
7.1 Permeability of fluid phases through coarse-grained soil
113(5)
7.1.1 Coefficient of water permeability
113(5)
7.1.2 Coefficient of air permeability
118(1)
7.2 Correction of pore size distribution for coefficient of water permeability
118(3)
7.2.1 Correction method for coefficient of water permeability
118(2)
7.2.2 Parallel translation index Ipt,w for coefficient of water permeability
120(1)
7.3 Governing equation for saturated-unsaturated seepage flow in soil
121(8)
7.3.1 Derivation of governing equation
121(4)
7.3.2 Permeability function
125(2)
7.3.3 Governing equation under limiting conditions
127(2)
References
129(2)
8 Stability analysis by proposed model
131(20)
8.1 Friction law
131(3)
8.1.1 Friction law of a solid body
131(2)
8.1.2 Friction law of particulate soil block
133(1)
8.2 Potential slip plane
134(2)
8.3 Apparent cohesion due to surface tension
136(2)
8.4 Self-weight retaining height
138(2)
8.5 Typical stability analyses in geotechnical engineering problems by proposed model
140(10)
8.5.1 Bearing capacity
140(4)
8.5.2 Earth pressure
144(3)
8.5.3 Slope stability
147(3)
References
150(1)
9 Deformation analysis using proposed models
151(12)
9.1 Microscopic motion of soil particles relating to macroscopic deformation
151(2)
9.2 Derivation of strain increments
153(3)
9.3 Evaluation of continuous and discontinuous motions of soil particles
156(6)
9.3.1 Continuous motion
156(2)
9.3.2 Discontinuous motion
158(1)
9.3.2.1 Disappearance
159(1)
9.3.2.2 Appearance
160(1)
9.3.2.3 Estimation of Npat, Xi,s + Δs/Npath,Xi,s
161(1)
9.3.3 Fitting parameters κβ, κdis and Κβpp
162(1)
Reference
162(1)
10 Numerical simulation for saturated-unsaturated soil tests
163(4)
10.1 Fundamental physical quantities of Shirasu
163(1)
10.2 Numerical simulation
163(4)
10.2.1 Soil water characteristic curve
163(1)
10.2.2 Coefficient of water permeability
164(1)
10.2.3 Self-weight retaining height
164(3)
11 Issues to be solved in future
167(4)
References
170(1)
Index 171
Ryosuke Kitamura is an emeritus professor at Kagoshima University, Japan. He is a recipient of the 1983 Outstanding Paper Award for Young Researchers of the Japanese Geotechnical Society, the 2003 Outstanding Paper Award of Japan Society of Civil Engineers and JGS Medal for Merit for 2004; and has served as a chairman or member of several technical committees of JSCE and JGS.

Kazunari Sako is currently an associate professor of Kagoshima University, Japan. He is a recipient of the 2009 Outstanding Paper Award for Young Researchers of JGE. He serves an editorial member of Japanese Geotechnical Journal, Soils and Foundations, and the Journal of the Japanese Society of Civil Engineering.