Atjaunināt sīkdatņu piekrišanu

Urban Drainage 4th edition [Mīkstie vāki]

(University of Exeter, UK), , , (National Technical University of Athens, Zografou, Greece)
  • Formāts: Paperback / softback, 592 pages, height x width: 254x178 mm, weight: 1179 g, 92 Tables, black and white; 226 Illustrations, black and white
  • Izdošanas datums: 30-Apr-2018
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 1498750583
  • ISBN-13: 9781498750585
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 45,64 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 64,05 €
  • Ietaupiet 29%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 592 pages, height x width: 254x178 mm, weight: 1179 g, 92 Tables, black and white; 226 Illustrations, black and white
  • Izdošanas datums: 30-Apr-2018
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 1498750583
  • ISBN-13: 9781498750585
Citas grāmatas par šo tēmu:
Environmental and engineering aspects are both involved in the drainage of rainwater and wastewater from areas of human development. Urban Drainage deals comprehensively not only with the design of new systems, but also the analysis and upgrading of existing infrastructure, and the environmental issues involved. Each chapter contains a descriptive overview of the complex issues involved, the basic engineering principles, and analysis for each topic. Extensive examples are used to support and demonstrate the key issues explained in the text.

Urban Drainage is an essential text for undergraduates and postgraduate students, lecturers and researchers in water engineering, environmental engineering, public health engineering and engineering hydrology. It is a useful reference for drainage design and operation engineers in the water industry and local authorities, and for consulting engineers. It will also be of interest to students, researchers and practitioners in environmental science, technology, policy and planning, geography and health studies.

Recenzijas

"Urban Drainage continues to evolve to reflect changing constraints and current approaches to best drainage practice so it remains the pre-eminent text on the subject. It provides exceptionally comprehensive coverage of all aspects of urban drainage which cant be found elsewhere in a single text, including the basics of hydrology, hydraulics, water quality, design, modelling, construction, operation as well as important advice on how urban water management can become more sustainable and resilient.

This is the book I always take off the shelf first when I have any query relating to urban drainage, and it just got even better."

-- Richard Fenner, University of Cambridge

"I read the entire book when it was in its first edition and found it to be a very useful reference that covered both combined and separate sewerage systems. Now in its fourth edition, I think this is a comprehensive textbook that I would recommend to anyone studying or practising in the field of urban drainage."

-- Simon Beecham, University of South Australia

"The greatest assets are the comprehensiveness and incorporation of the latest information. At the same time, this information is delivered in a very readable and succinct manner (500 + pages), without losing the rigour of discussion of fundamental concepts."

-- Jiri Marsalek, Environment and Climate Change Canada

"This is an excellent book covering a wide range of issues and examples relevant to urban drainage. I am particularly pleased to see that this new edition contains enhanced consideration of wider environmental issues relevant not only to urban drainage but to urban environments as a whole.... I consider this the best text available right now for UK drainage design and practice. "

-- Rebecca Wade, Abertay University, UK

Readership xxvii
Acknowledgements xxix
Notation xxxi
Abbreviations xxxv
Authors xxxix
1 Introduction 1(18)
1.1 What is urban drainage?
1(1)
1.2 Effects of urbanisation
2(2)
1.3 Urban drainage priorities
4(1)
1.3.1 Public health
4(1)
1.3.2 Minimising adverse impacts
4(1)
1.4 History
5(3)
1.4.1 Ancient civilisations
5(1)
1.4.2 Ancient to modern
6(1)
1.4.3 London
6(2)
1.5 Geography
8(1)
1.6 Types of system
8(5)
1.6.1 Combined systems
11(1)
1.6.2 Separate systems
12(1)
1.6.3 Hybrid and partially separate systems
13(1)
1.6.4 Non-pipe systems
13(1)
1.7 Urban water system
13(3)
1.8 Changing context
16(1)
Problems
16(1)
Key source
17(1)
References
17(2)
2 Water quality 19(24)
2.1 Introduction
19(1)
2.2 Basics
19(2)
2.2.1 Strength
19(1)
2.2.2 Equivalent concentrations
20(1)
2.3 Parameters
21(9)
2.3.1 Sampling and analysis
21(1)
2.3.2 Solids
21(1)
2.3.2.1 Gross solids
21(1)
2.3.2.2 Grit
22(1)
2.3.2.3 Suspended solids
22(1)
2.3.2.4 Volatile solids
22(1)
2.3.3 Oxygen
22(2)
2.3.3.1 Dissolved oxygen
22(2)
2.3.4 Organic compounds
24(3)
2.3.4.1 Biochemical oxygen demand (BODs)
24(1)
2.3.4.2 Chemical oxygen demand (COD)
25(1)
2.3.4.3 Total organic carbon (TOC)
26(1)
2.3.5 Nitrogen
27(1)
2.3.5.1 Organic nitrogen (org.N)
27(1)
2.3.5.2 Ammonia nitrogen (NH3-N)
28(1)
2.3.5.3 Nitrite and nitrate nitrogen (NO2- -N, NO-3-N)
28(1)
2.3.6 Phosphorus
28(1)
2.3.7 Sulphur
28(1)
2.3.8 Hydrocarbons
29(1)
2.3.9 FOG
29(1)
2.3.10 Heavy metals and synthetic compounds
29(1)
2.3.11 Micro-organisms
29(1)
2.3.12 Priority substances
30(1)
2.4 Processes
30(2)
2.4.1 Hydrolysis
30(1)
2.4.2 Aerobic degradation
31(1)
2.4.2.1 Nitrification
31(1)
2.4.3 Denitrification
31(1)
2.4.4 Anaerobic degradation
32(1)
2.5 Receiving water impacts
32(4)
2.5.1 Emissions
32(1)
2.5.2 Processes
33(1)
2.5.3 Impacts
34(2)
2.5.3.1 DO depletion
34(1)
2.5.3.2 Eutrophication
35(1)
2.5.3.3 Toxics
35(1)
2.5.3.4 Public health
35(1)
2.5.3.5 Aesthetics
35(1)
2.6 Receiving water standards
36(4)
2.6.1 Legislation and regulatory regime
36(2)
2.6.1.1 Urban Waste Water Treatment Directive
36(1)
2.6.1.2 Bathing Water Directive
36(1)
2.6.1.3 Water Framework Directive
37(1)
2.6.1.4 Marine Strategy Framework Directive
38(1)
2.6.2 Permitting intermittent discharges
38(1)
2.6.3 Environmental quality standards
38(5)
2.6.3.1 Aquatic life standards
38(1)
2.6.3.2 Shellfish standards
39(1)
2.6.3.3 Bathing standards
39(1)
2.6.3.4 Amenity standards
39(1)
2.7 Urban Pollution Management (UPM)
40(1)
Problems
40(1)
Key sources
41(1)
References
41(2)
3 Wastewater 43(14)
3.1 Introduction
43(1)
3.2 Domestic
43(5)
3.2.1 Water use
44(1)
3.2.1.1 Climate
44(1)
3.2.1.2 Demography
44(1)
3.2.1.3 Socio-economic factors
44(1)
3.2.1.4 Development type
44(1)
3.2.1.5 Extent of metering and water conservation measures
45(1)
3.2.1.6 Quantification
45(1)
3.2.2 Water-wastewater relationship
45(1)
3.2.3 Temporal variability
46(2)
3.2.3.1 Long term
47(1)
3.2.3.2 Annual
47(1)
3.2.3.3 Weekly
47(1)
3.2.3.4 Diurnal
47(1)
3.2.4 Appliances
48(1)
3.3 Non-domestic
48(2)
3.3.1 Commercial
48(1)
3.3.2 Industrial
49(1)
3.4 Infiltration and inflow
50(2)
3.4.1 Problems
50(1)
3.4.2 Quantification
51(1)
3.4.3 Ex filtration
51(1)
3.5 Wastewater quality
52(3)
3.5.1 Pollutant sources
52(2)
3.5.1.1 Human excreta
52(1)
3.5.1.2 Toilet/WC
52(1)
3.5.1.3 Food
53(1)
3.5.1.4 Washing/Laundry
53(1)
3.5.1.5 Industry
53(1)
3.5.1.6 Carriage water and groundwater
53(1)
3.5.2 Pollutant levels
54(1)
Problems
55(1)
Key sources
55(1)
References
55(2)
4 Rainfall 57(30)
4.1 Introduction
57(1)
4.2 Measurement
57(5)
4.2.1 Rain gauges
57(2)
4.2.1.1 Siting
58(1)
4.2.2 Radar
59(1)
4.2.3 Satellites
60(1)
4.2.4 Data requirements
61(1)
4.3 Analysis
62(7)
4.3.1 Basics
62(1)
4.3.2 IDF relationships
62(2)
4.3.2.1 Definition
62(1)
4.3.2.2 Derivation
62(2)
4.3.2.3 IDFs in practice
64(1)
4.3.3 Wallingford Procedure
64(1)
4.3.4 Areal extent
64(3)
4.3.5 Flood Estimation Handbook
67(2)
4.4 Single events
69(2)
4.4.1 Synthetic design storms
69(1)
4.4.2 Historical single events
70(1)
4.4.3 Critical input hyetograph (Superstorm)
70(1)
4.5 Multiple events
71(5)
4.5.1 Historical time series
71(2)
4.5.1.1 Annual time series
72(1)
4.5.2 Synthetic time series
73(3)
4.5.2.1 Synthetic series
73(1)
4.5.2.2 Stochastic rainfall generation
73(2)
4.5.2.3 Stochastic disaggregation models
75(1)
4.6 Climate change
76(5)
4.6.1 Causes
76(2)
4.6.2 Future trends
78(1)
4.6.3 Design rainfall under climate change
79(1)
4.6.4 Implications
79(2)
4.6.5 Solutions
81(1)
Problems
81(1)
Key sources
82(1)
References
82(5)
5 Stormwater 87(22)
5.1 Introduction
87(1)
5.2 Runoff generation
87(7)
5.2.1 Initial losses
87(2)
5.2.1.1 Interception and wetting losses
87(1)
5.2.1.2 Depression storage
88(1)
5.2.1.3 Representation
88(1)
5.2.2 Continuing losses
89(1)
5.2.2.1 Evapo-transpiration
89(1)
5.2.2.2 Infiltration
89(1)
5.2.2.3 Representation
90(1)
5.2.3 Fixed runoff equation
90(3)
5.2.3.1 PIMP
91(1)
5.2.3.2 SOIL
91(1)
5.2.3.3 UCWI
92(1)
5.2.3.4 Limitations
92(1)
5.2.4 Variable runoff equation
93(1)
5.2.4.1 Impervious area runoff
93(1)
5.2.4.2 Pervious area runoff
93(1)
5.2.5 UK Water Industry Research runoff equation
94(1)
5.3 Overland flow
94(4)
5.3.1 Unit hydrographs
94(1)
5.3.2 Synthetic unit hydrographs
95(1)
5.3.3 Time-area diagrams
96(1)
5.3.4 Reservoir models
97(1)
5.3.5 Kinematic wave
98(1)
5.4 Stormwater quality
98(7)
5.4.1 Pollutant sources
98(2)
5.4.1.1 Atmospheric pollution
98(1)
5.4.1.2 Vehicles
99(1)
5.4.1.3 Buildings and roads
99(1)
5.4.1.4 Animals
99(1)
5.4.1.5 De-icing
99(1)
5.4.1.6 Urban debris
100(1)
5.4.1.7 Spills/Leaks
100(1)
5.4.2 Surface pollutants
100(1)
5.4.3 Pollutant levels
101(1)
5.4.4 Representation
101(4)
5.4.4.1 Event mean concentrations
102(1)
5.4.4.2 Regression equations
102(1)
5.4.4.3 Buildup
102(1)
5.4.4.4 Washoff
103(2)
5.4.5 Sewer misconnections
105(1)
Problems
105(1)
Key sources
106(1)
References
106(3)
6 System components and layout 109(12)
6.1 Introduction
109(1)
6.2 Building drainage
109(2)
6.2.1 Soil and waste drainage
109(2)
6.2.1.1 Inside
109(1)
6.2.1.2 Outside
110(1)
6.2.1.3 Components
110(1)
6.2.1.4 Layout
110(1)
6.2.2 Roof drainage
111(1)
6.3 System components
111(7)
6.3.1 Sewers
111(4)
6.3.1.1 Vertical alignment
111(3)
6.3.1.2 Horizontal alignment
114(1)
6.3.2 Manholes
115(1)
6.3.3 Gully inlets
116(1)
6.3.4 Ventilation
117(1)
6.4 Design
118(1)
6.4.1 Stages
118(1)
6.4.2 Sewers for adoption
119(1)
Problems
119(1)
Key sources
120(1)
References
120(1)
7 Hydraulics 121(30)
7.1 Introduction
121(1)
7.2 Basic principles
121(4)
7.2.1 Pressure
121(1)
7.2.2 Continuity of flow
122(1)
7.2.3 Flow classification
123(1)
7.2.4 Laminar and turbulent flow
123(1)
7.2.5 Energy and head
124(1)
7.3 Pipe flow
125(8)
7.3.1 Head (energy) losses
125(1)
7.3.2 Friction losses
126(1)
7.3.3 Friction factor
126(2)
7.3.4 Wallingford charts and tables
128(2)
7.3.4.1 Charts
128(2)
7.3.4.2 Tables
130(1)
7.3.5 Approximate equations
130(1)
7.3.6 Roughness
131(1)
7.3.7 Local losses
131(2)
7.4 Part-full pipe flow
133(9)
7.4.1 Normal depth
133(1)
7.4.2 Geometric and hydraulic elements
133(4)
7.4.3 Butler-Pinkerton charts
137(1)
7.4.4 Non-circular sections
138(1)
7.4.5 Surcharge
138(2)
7.4.6 Velocity profiles
140(1)
7.4.7 Minimum velocity
141(1)
7.4.8 Minimum shear stress
141(1)
7.4.9 Maximum velocity
141(1)
7.5 Open-channel flow
142(6)
7.5.1 Uniform flow
142(1)
7.5.1.1 Manning&aposs equation
142(1)
7.5.2 Nonuniform flow
143(1)
7.5.3 Specific energy
143(1)
7.5.4 Critical, subcritical, and supercritical flow
143(2)
7.5.5 Gradually varied flow
145(1)
7.5.6 Rapidly varied flow
146(2)
Problems
148(1)
Key source
148(1)
References
148(3)
8 Hydraulic features 151(30)
8.1 Flow controls
151(8)
8.1.1 Orifice plate
151(3)
8.1.2 Penstock
154(1)
8.1.3 Vortex regulator
155(1)
8.1.4 Throttle pipe
156(1)
8.1.5 Flap valve
157(1)
8.1.6 Summary of characteristics of flow control devices
157(2)
8.2 Weirs
159(3)
8.2.1 Transverse weirs
159(1)
8.2.2 Side weirs
160(2)
8.3 Sewer drops
162(6)
8.3.1 Vortex drop shafts
163(4)
8.3.2 Other sewer drop arrangements
167(1)
8.4 Inverted siphons
168(1)
8.5 Gully spacing
169(4)
8.5.1 Road channel flow
169(1)
8.5.2 Gully hydraulic efficiency
170(2)
8.5.3 Spacing
172(1)
8.5.3.1 Intermediate gullies
172(1)
8.5.3.2 Initial gullies
173(1)
8.5.3.3 Potential optimisation
173(1)
8.6 Culverts
173(4)
8.6.1 Culverts in urban drainage
173(1)
8.6.2 Flow cases
174(3)
Problems
177(1)
References
178(3)
9 Foul sewers 181(28)
9.1 Introduction
181(1)
9.1.1 Flow regime
181(1)
9.2 Design
181(2)
9.2.1 Choice of design period
182(1)
9.2.2 Criterion of satisfactory service
182(1)
9.3 Large sewers
183(9)
9.3.1 Flow patterns
184(1)
9.3.2 Dry weather flow
185(1)
9.3.3 Domestic flow (PG)
186(1)
9.3.3.1 Population (P)
186(1)
9.3.3.2 Per capita water consumption (G)
186(1)
9.3.4 Infiltration (I)
187(1)
9.3.4.1 Measurement
187(1)
9.3.4.2 Prevention
188(1)
9.3.5 Non-domestic flows (E)
188(1)
9.3.6 Peak flow
188(3)
9.3.7 Design criteria
191(1)
9.3.7.1 Capacity
191(1)
9.3.7.2 Self-cleansing
191(1)
9.3.7.3 Roughness
191(1)
9.3.7.4 Minimum pipe sizes
191(1)
9.3.8 Design method
191(1)
9.4 Small sewers
192(7)
9.4.1 Discharge unit method
193(5)
9.4.1.1 Probabilistic framework
193(1)
9.4.1.2 Design criterion
194(2)
9.4.1.3 Mixed appliances
196(2)
9.4.2 Design criteria
198(1)
9.4.3 Choice of methods
199(1)
9.5 Solids transport
199(7)
9.5.1 Large sewers
201(3)
9.5.2 Small sewers
204(2)
9.5.3 Sewer blockage
206(1)
Problems
206(1)
Key sources
207(1)
References
207(2)
10 Storm sewers 209(28)
10.1 Introduction
209(1)
10.1.1 Flow regime
209(1)
10.2 Design
209(3)
10.2.1 Design storm
210(1)
10.2.2 Optimal design
211(1)
10.2.3 Return period and design life probability of exceedance
211(1)
10.3 Contributing area
212(4)
10.3.1 Catchment area measurement
212(1)
10.3.2 Land use
213(1)
10.3.3 Urban creep
213(1)
10.3.4 Runoff coefficient
214(2)
10.3.5 Time of concentration
216(1)
10.3.5.1 Time of entry
216(1)
10.3.5.2 Time of flow
216(1)
10.4 Rational Method
216(7)
10.4.1 Steady-state runoff
216(1)
10.4.2 Critical rainfall intensity
217(1)
10.4.2.1 Small areas
218(1)
10.4.3 Modified Rational Method
218(1)
10.4.3.1 Volumetric runoff coefficient (Cv)
219(1)
10.4.3.2 Dimensionless routing coefficient (CR)
219(1)
10.4.4 Design criteria
219(1)
10.4.4.1 Capacity
219(1)
10.4.4.2 Self-cleansing
219(1)
10.4.4.3 Roughness
220(1)
10.4.4.4 Minimum pipe sizes
220(1)
10.4.5 Design method
220(1)
10.4.6 Limitations
220(3)
10.5 Time-area method
223(4)
10.5.1 The need
223(1)
10.5.2 Basic diagram
224(2)
10.5.3 Diagram construction
226(1)
10.6 Hydrograph methods
227(6)
10.6.1 Time-Area Method
227(3)
10.6.1.1 Limitations
228(2)
10.6.2 Level pool routing method
230(1)
10.6.3 Limitations
231(2)
10.7 Undeveloped site runoff
233(1)
Problems
233(2)
Key sources
235(1)
References
235(2)
11 Flooding 237(18)
11.1 Introduction
237(1)
11.2 Exceedance
238(1)
11.2.1 Systems interface
238(1)
11.2.2 Exceedance flow
239(1)
11.3 Standards
239(1)
11.4 Flood risk
240(4)
11.4.1 Flood damage
241(2)
11.4.1.1 Flood depth
242(1)
11.4.2 Risk assessment
243(1)
11.5 Management
244(5)
11.5.1 Options
244(1)
11.5.2 Surface flow features
244(3)
11.5.2.1 Gully inlets
244(1)
11.5.2.2 Surface pathways
245(1)
11.5.2.3 Surface storage
245(1)
11.5.2.4 Safety
246(1)
11.5.3 Flood protection of buildings
247(2)
11.5.3.1 Layout
247(1)
11.5.3.2 Fabric
247(2)
11.6 Flood resilience
249(2)
11.6.1 Properties
249(1)
11.6.2 Performance
250(1)
Problems
251(1)
Key sources
251(1)
References
252(3)
12 Combined sewers and combined sewer overflows 255(26)
12.1 Background
255(1)
12.2 System flows
255(2)
12.2.1 Low flow rates
255(2)
12.3 The role of CSOs
257(1)
12.3.1 Flow and pollutants
257(1)
12.3.2 First foul flush
258(1)
12.4 Control of pollution from combined sewer systems
258(3)
12.4.1 CSO settings and permits
258(3)
12.4.1.1 Technical Committee Formula A
258(2)
12.4.1.2 Scottish Development Department (SDD)
260(1)
12.4.1.3 Urban pollution management
260(1)
12.4.2 Monitoring
261(1)
12.5 Approaches to CSO design
261(11)
12.5.1 High side weir
261(1)
12.5.1.1 Principles
261(1)
12.5.1.2 Dimensions and layout
261(1)
12.5.2 Screens
262(4)
12.5.2.1 Principles
262(1)
12.5.2.2 Development
263(2)
12.5.2.3 Dimensions and layout
265(1)
12.5.3 Stilling pond
266(1)
12.5.3.1 Principles
266(1)
12.5.3.2 Development
267(1)
12.5.3.3 Dimensions and layout
267(1)
12.5.4 Hydrodynamic vortex separator
267(2)
12.5.4.1 Principles
267(1)
12.5.4.2 Development
268(1)
12.5.4.3 Dimensions and layout
269(1)
12.5.5 Storage
269(3)
12.5.5.1 Principles
269(1)
12.5.5.2 Development
269(2)
12.5.5.3 Dimensions and layout
271(1)
12.6 Effectiveness of CSOs
272(2)
12.6.1 Performance measures
272(1)
12.6.2 Role of CFD
272(1)
12.6.3 Gross solids
273(1)
12.6.4 Choice of CSO design
274(1)
12.7 CSO design details
274(4)
12.7.1 Diameter of inflow pipe
274(1)
12.7.2 Creating good inlet flow conditions
275(1)
12.7.3 Weirs
275(1)
12.7.4 Selecting, sizing, and accommodating the screen
275(2)
12.7.5 Control of outflow
277(1)
12.7.6 Chamber invert
277(1)
12.7.7 Design return period
277(1)
12.7.8 Top water level
278(1)
12.7.9 Access
278(1)
Problems
278(1)
Key sources
279(1)
References
279(2)
13 Storage 281(12)
13.1 Function of storage
281(1)
13.2 Overall design
282(2)
13.2.1 Online
283(1)
13.2.2 Offline
283(1)
13.2.3 Flow control
283(1)
13.3 Sizing
284(2)
13.3.1 Preliminary storage sizing
285(1)
13.3.2 Storage routing
285(1)
13.4 Level pool (or reservoir) routing
286(1)
13.5 Alternative routing procedure
287(5)
Problems
292(1)
References
292(1)
14 Pumped systems 293(22)
14.1 Why use a pumping system?
293(1)
14.2 General arrangement of a pumping system
293(1)
14.3 Hydraulic design
294(6)
14.3.1 Pump characteristics
294(1)
14.3.2 System characteristics
295(1)
14.3.3 Power
296(2)
14.3.4 Pumps in parallel
298(1)
14.3.5 Suction and delivery pipes
299(1)
14.4 Rising mains
300(2)
14.4.1 Differences from gravity sewers
300(1)
14.4.1.1 Hydraulic gradient
300(1)
14.4.1.2 Flow is not continuous
300(1)
14.4.1.3 Power input
301(1)
14.4.1.4 The pipes are under pressure
301(1)
14.4.2 Design features
301(1)
14.4.3 Surge
301(1)
14.5 Types of pump
302(4)
14.6 Pumping station design
306(5)
14.6.1 Main elements
306(1)
14.6.1.1 Wet well-dry well
307(1)
14.6.1.2 Wet well only
307(1)
14.6.2 Number of pumps
307(1)
14.6.3 Control
307(1)
14.6.4 Sump volume
307(3)
14.6.5 Flow arrangements
310(1)
14.6.6 Maintenance
310(1)
14.6.7 Energy demands
311(1)
14.7 Non-gravity systems
311(1)
14.8 Energy use
312(1)
Problems
312(1)
Key sources
313(1)
References
313(2)
15 Structural design and construction 315(22)
15.1 Types of construction
315(1)
15.2 Pipes
315(4)
15.2.1 General
315(1)
15.2.2 Materials
316(2)
15.2.2.1 Clay
317(1)
15.2.2.2 Concrete
317(1)
15.2.2.3 Ductile iron
317(1)
15.2.2.4 Steel
317(1)
15.2.2.5 Unplasticised PVC (PVC-U)
317(1)
15.2.2.6 Polyethylene (PE)
317(1)
15.2.2.7 Other materials
318(1)
15.2.2.8 Sizes
318(1)
15.2.3 Pipe joints
318(1)
15.2.3.1 Spigot and socket
318(1)
15.2.3.2 Sleeve
318(1)
15.2.3.3 Bolted flange joints
319(1)
15.2.3.4 Fusion jointing
319(1)
15.3 Structural design
319(6)
15.3.1 Introduction
319(1)
15.3.2 Rigid pipeline design
320(7)
15.3.2.1 Soil load, Wc
321(3)
15.3.2.2 Concentrated surcharge load
324(1)
15.3.2.3 Liquid load
324(1)
15.3.2.4 Strength
325(1)
15.4 Site investigation
325(2)
15.5 Open-trench construction
327(2)
15.5.1 Excavation
327(1)
15.5.2 Pipe laying
328(1)
15.6 Tunnelling
329(1)
15.6.1 Lining
329(1)
15.6.1.1 Primary lining
329(1)
15.6.1.2 Secondary lining
329(1)
15.6.2 Ground treatment and control of groundwater
329(1)
15.6.2.1 Dewatering
329(1)
15.6.2.2 Ground freezing
330(1)
15.6.2.3 Injection of grouts or chemicals
330(1)
15.6.2.4 Compressed air
330(1)
15.6.3 Excavation
330(1)
15.7 Trenchless methods
330(2)
15.7.1 Pipejacking
331(1)
15.7.2 Microtunnelling
331(1)
15.7.3 Auger boring
331(1)
15.7.3.1 Directional drilling (DD)
332(1)
15.7.3.2 Impact moling
332(1)
15.7.3.3 Pipe ramming
332(1)
15.7.3.4 Timber headings
332(1)
15.8 Costs
332(1)
15.8.1 Construction costs
332(1)
15.8.2 Carbon accounting
333(1)
Problems
333(1)
Key sources
334(1)
References
334(1)
British Standards
335(2)
16 Sediments 337(20)
16.1 Introduction
337(2)
16.2 Origins
339(1)
16.2.1 Definition
339(1)
16.2.2 Sources
339(1)
16.3 Effects
340(2)
16.3.1 Problems
340(1)
16.3.2 Hydraulic
340(1)
16.3.2.1 Suspension
340(1)
16.3.2.2 Geometry
341(1)
16.3.2.3 Bed roughness
341(1)
16.3.3 Pollutional
341(1)
16.4 Transport
342(3)
16.4.1 Entrainment
342(1)
16.4.2 Transport
343(1)
16.4.3 Deposition
344(1)
16.4.4 Sediment beds and bed-load transport
344(1)
16.5 Characteristics
345(3)
16.5.1 Deposited sediment
345(2)
16.5.1.1 Physical characteristics
345(1)
16.5.1.2 Chemical characteristics
346(1)
16.5.1.3 Significance of deposits
346(1)
16.5.2 Mobile sediment
347(1)
16.5.2.1 Suspension
347(1)
16.5.2.2 Near-bed
347(1)
16.5.2.3 Granular bed-load
348(1)
16.5.2.4 Particle size
348(1)
16.6 Self-cleansing design
348(5)
16.6.1 Velocity based
348(1)
16.6.2 Tractive force based
349(1)
16.6.3 The CIRIA method
349(8)
16.6.3.1 Self-cleansing
349(1)
16.6.3.2 Movement criteria
350(2)
16.6.3.3 Design procedure
352(1)
16.6.3.4 Limitations
353(1)
Problems
353(1)
Key sources
354(1)
References
354(3)
17 Operation and maintenance 357(24)
17.1 Introduction
357(1)
17.2 Maintenance strategies
357(2)
17.2.1 Public health
357(1)
17.2.2 Asset management
357(1)
17.2.3 Maintain hydraulic capacity
357(1)
17.2.4 Minimise pollution
358(1)
17.2.5 Minimise disruption
358(1)
17.2.6 Reactive maintenance
358(1)
17.2.7 Planned maintenance
358(1)
17.2.8 Operational functions
358(1)
17.2.9 Role of design
359(1)
17.2.10 Predicting failure
359(1)
17.3 Sewer location and inspection
359(6)
17.3.1 Applications
360(1)
17.3.2 Frequency
360(1)
17.3.3 Locational survey
361(1)
17.3.4 Closed-circuit television (CCTV)
362(1)
17.3.4.1 Propulsion
362(1)
17.3.4.2 Camera operation
362(1)
17.3.5 Manual inspection
363(1)
17.3.6 Other techniques
363(2)
17.3.6.1 Sonar
363(1)
17.3.6.2 Infrared
364(1)
17.3.6.3 Sewer profiling
364(1)
17.3.6.4 Alternative approaches
364(1)
17.3.7 Data storage and management
365(1)
17.4 Sewer cleaning techniques
365(6)
17.4.1 Objectives
365(1)
17.4.2 Problems
365(2)
17.4.2.1 Gross solids (input)
366(1)
17.4.2.2 FOG/scale (input)
366(1)
17.4.2.3 Sediment (input)
366(1)
17.4.2.4 Defects (system)
367(1)
17.4.2.5 Traps (system)
367(1)
17.4.2.6 Intruding laterals (system)
367(1)
17.4.2.7 Tree roots (system)
367(1)
17.4.3 Cleaning approaches
367(2)
17.4.3.1 Rodding or boring
367(1)
17.4.3.2 Winching or dragging
367(1)
17.4.3.3 Jetting
368(1)
17.4.3.4 Flushing
368(1)
17.4.3.5 Hand excavation
368(1)
17.4.3.6 Invert traps
368(1)
17.4.3.7 Gully pots
369(1)
17.4.4 Comparison of cleaning methods
369(1)
17.4.5 FOG control
369(3)
17.4.5.1 At source
370(1)
17.4.5.2 Recycling
370(1)
17.4.5.3 Chemical treatment
370(1)
17.4.5.4 Bio-augmentation
370(1)
17.5 Ancillary and network equipment maintenance
371(1)
17.6 SuDS
371(1)
17.7 Health and safety
372(1)
17.7.1 Atmospheric hazards
372(1)
17.7.2 Physical injury
372(1)
17.7.3 Infectious diseases
372(1)
17.7.4 Safety equipment
373(1)
17.7.5 Rodent control
373(1)
17.8 Gas generation and control
373(4)
17.8.1 Mechanisms
373(1)
17.8.2 Favourable conditions
374(1)
17.8.3 Sulphide buildup
375(1)
17.8.4 Control
375(6)
17.8.4.1 Sewerage detail design
376(1)
17.8.4.2 Ventilation
376(1)
17.8.4.3 Aeration
377(1)
17.8.4.4 Oxidation
377(1)
17.8.4.5 Chemical addition
377(1)
Problems
377(1)
Key sources
378(1)
References
378(3)
18 Rehabilitation 381(16)
18.1 Introduction
381(3)
18.1.1 The problem
381(1)
18.1.2 Sewerage Rehabilitation Manual
381(1)
18.1.3 The need for rehabilitation
382(1)
18.1.4 Repair, renovation, and replacement
383(1)
18.2 SRM procedure
384(3)
18.2.1 Steps in the procedure
384(1)
18.2.2 Integrated approach
384(3)
18.2.2.1 Hydraulic
385(1)
18.2.2.2 Environmental
386(1)
18.2.2.3 Structural
386(1)
18.2.2.4 Operations and maintenance
387(1)
18.2.2.5 Developing the plan
387(1)
18.2.2.6 Implementation
387(1)
18.3 Methods of structural repair and renovation
387(6)
18.3.1 Man-entry sewers
388(1)
18.3.1.1 Repair
388(1)
18.3.1.2 Renovation
388(1)
18.3.2 Non-man-entry sewers
388(3)
18.3.2.1 Repair
389(1)
18.3.2.2 Renovation
389(2)
18.3.3 Choice of method
391(1)
18.3.4 Associated work
392(1)
18.3.4.1 Laterals
392(1)
18.3.4.2 Cleaning
393(1)
18.3.4.3 Overpumping
393(1)
18.4 Hydraulic rehabilitation
393(1)
18.4.1 Reduce hydraulic inputs to piped system
394(1)
18.4.2 Maximize capabilities of the existing system
394(1)
18.4.3 Adjust system to cause attenuation of peak flows
394(1)
18.4.4 Increase capacity of the system
394(1)
18.5 Balancing cost and risk
394(1)
Problems
395(1)
Key sources
396(1)
References
396(1)
19 Modelling in practice 397(36)
19.1 Models and urban drainage engineering
397(1)
19.1.1 Development of flow models
397(1)
19.1.2 Model types
398(1)
19.2 Urban drainage models in context
398(2)
19.2.1 The modeller
398(1)
19.2.2 Confidence in the model
399(1)
19.2.3 Model use
399(1)
19.3 Elements of urban drainage models
400(2)
19.3.1 Overview of the components
400(1)
19.3.2 Rainfall
400(1)
19.3.3 Rainfall to runoff
401(1)
19.3.4 Overland flow direct from runoff
401(1)
19.3.5 Dry weather flow
401(1)
19.3.6 Infiltration
401(1)
19.3.7 Surface flooding
402(1)
19.4 Modelling unsteady flow
402(6)
19.4.1 The Saint-Venant equations
403(1)
19.4.2 Simplifications of the full equations
404(1)
19.4.3 Numerical methods of solution
404(3)
19.4.4 Surcharge
407(1)
19.5 Setting up and validating a system model
408(5)
19.5.1 Defining the model purpose and detail
408(1)
19.5.2 Input data
408(1)
19.5.3 Model testing
409(1)
19.5.4 Flow surveys
410(1)
19.5.5 Model calibration/verification against measured flow data
410(2)
19.5.6 Evaluating confidence
412(1)
19.5.7 Documentation
413(1)
19.6 Modelling flooding
413(3)
19.6.1 DTM/DEMs
413(1)
19.6.2 Virtual flood cones
413(1)
19.6.3 One-dimensional-two-dimensional (1D-2D) coupled models
414(1)
19.6.4 Rapid flood spreading models
415(1)
19.7 Water quality modelling
416(3)
19.7.1 The processes to be modelled
417(1)
19.7.2 Wastewater inflow
418(1)
19.7.3 Catchment surface
418(1)
19.7.4 Gully pots
418(1)
19.7.5 Transport through the system
419(1)
19.7.6 Pipe and tank deposits
419(1)
19.8 Modelling pollutant transport
419(4)
19.8.1 Advection/dispersion
419(1)
19.8.2 Completely mixed "tank"
420(1)
19.8.3 Sediment transport
421(1)
19.8.3.1 Mechanics
421(1)
19.8.3.2 Sediment bed
421(1)
19.8.3.3 Solid attachment
422(1)
19.8.4 Gross solids
422(1)
19.9 Modelling pollutant transformation
423(2)
19.9.1 Conservative pollutants
423(1)
19.9.2 Simple decay expressions
424(1)
19.9.3 Complex processes approach
424(1)
19.9.3.1 Oxygen balance
424(1)
19.9.3.2 Reaeration
424(1)
19.9.3.3 Oxygen consumption in the bulk flow
425(1)
19.9.3.4 Oxygen consumption in the biofilm
425(1)
19.9.3.5 Oxygen consumption in the sediment
425(1)
19.10 Using water quality models
425(1)
19.10.1 Model applications
425(1)
19.10.2 Types of sewer quality models
425(1)
19.10.3 Types and complexity of river quality models
426(1)
19.11 Planning an integrated study
426(3)
19.11.1 Components to consider
426(1)
19.11.1.1 Drivers
426(1)
19.11.1.2 Catchment boundary
426(1)
19.11.1.3 Waterbodies
426(1)
19.11.1.4 River modelling approach
427(1)
19.11.1.5 Point source discharges
427(1)
19.11.1.6 Rainfall and evaporation
427(1)
19.11.2 Input data and model calibration/verification
427(2)
19.11.3 Data collection in sewers and receiving waters
429(1)
Problems
429(1)
Key sources
429(1)
References
430(3)
20 Innovations in modelling 433(16)
20.1 Introduction
433(1)
20.2 Alternative, non-physically based, modelling approaches
433(1)
20.2.1 Empirical models
434(1)
20.2.2 Artificial neural networks
434(1)
20.2.3 Conceptual or meta-models
434(1)
20.2.4 Stochastic models
434(1)
20.3 Integrated modelling
434(7)
20.3.1 Why do we need integrated models?
435(1)
20.3.2 Defining and classifying the level of integration
436(1)
20.3.3 Methods and tools for integrated system modelling and design
437(1)
20.3.4 Integrated control
437(5)
20.3.4.1 Multi-objective optimisation
440(1)
20.4 Coupling models to other models: Emerging standards
441(1)
20.5 Calibration aspects for integrated urban drainage systems
442(1)
20.5.1 Optimisation methods
442(1)
20.6 Uncertainty analysis
443(2)
20.6.1 Types of uncertainty in urban drainage modelling
444(1)
20.6.2 Uncertainty analysis in urban drainage modelling
444(1)
Problems
445(1)
Key sources
446(1)
References
446(3)
21 Stormwater management (SuDS) 449(24)
21.1 Introduction
449(1)
21.2 Devices
449(9)
21.2.1 Inlet controls
450(2)
21.2.1.1 Blue roofs
450(1)
21.2.1.2 Green roofs
450(1)
21.2.1.3 Rainwater harvesting and water butts
450(2)
21.2.1.4 Paved area ponding
452(1)
21.2.2 Infiltration devices
452(2)
21.2.3 Vegetated surfaces
454(1)
21.2.4 Pervious pavements
455(2)
21.2.5 Filter drains
457(1)
21.2.6 Infiltration basins
457(1)
21.2.7 Detention basins
457(1)
21.2.8 Ponds
457(1)
21.2.9 Constructed wetlands
458(1)
21.3 Elements of design
458(7)
21.3.1 Rainfall
458(1)
21.3.2 Runoff
458(1)
21.3.3 Conveyance
459(1)
21.3.4 Inlets and outlets
459(1)
21.3.5 Storage volume related to inflow and outflow
459(1)
21.3.6 Infiltration from a pervious pavement sub-base
459(2)
21.3.7 Infiltration from a soakaway or infiltration trench
461(2)
21.3.7.1 BRE Digest 365 method
461(2)
21.3.7.2 CIRIA 156 method
463(1)
21.3.8 Water quality
463(1)
21.3.8.1 Mass balance
463(1)
21.3.8.2 Treatment volume
464(1)
21.3.9 Amenity and biodiversity
464(1)
21.3.10 Modelling
464(1)
21.4 SuDS applications
465(1)
21.4.1 Management train
465(1)
21.4.1.1 Retrofit
465(1)
21.5 Issues
466(2)
21.5.1 Long-term performance
466(2)
21.5.1.1 Maintenance
467(1)
21.5.1.2 Adoption
467(1)
21.5.1.3 Costs
467(1)
21.5.1.4 Planning
468(1)
21.5.1.5 Groundwater pollution
468(1)
21.6 Other stormwater management measures
468(1)
21.6.1 Oil separators
468(5)
21.6.1.1 Non-structural measures
468(1)
21.6.1.2 Public attitudes and community engagement
468(1)
Problems
469(1)
Key sources
469(1)
References
470(3)
22 Smart systems 473(18)
22.1 Introduction
473(1)
22.2 Real-time control
473(7)
22.2.1 Definition
473(1)
22.2.2 Equipment
474(1)
22.2.2.1 Sensors
474(1)
22.2.2.2 Regulators
474(1)
22.2.2.3 Controllers
475(1)
22.2.2.4 Data transmission systems
475(1)
22.2.3 Control
475(3)
22.2.3.1 Classification
475(1)
22.2.3.2 Control loop
476(1)
22.2.3.3 Control strategy
477(1)
22.2.4 Applicability
478(1)
22.2.5 Benefits and drawbacks
479(1)
22.3 Early warning systems
480(6)
22.3.1 Definition and elements
480(2)
22.3.1.1 Risk knowledge
480(1)
22.3.1.2 Monitoring and warning service
481(1)
22.3.1.3 Dissemination
482(1)
22.3.1.4 Emergency response capacity
482(1)
22.3.2 Forecast services
482(12)
22.3.2.1 Flow forecasting models
484(1)
22.3.2.2 Meteorological predictions
484(1)
22.3.2.3 Flood occurrence criteria
485(1)
22.4 Citizen observatories
486(1)
Problems
487(1)
Key sources
487(1)
References
487(4)
23 Global issues 491(20)
23.1 Introduction
491(2)
23.2 Health
493(1)
23.3 Option selection
494(1)
23.3.1 Sanitation
494(1)
23.3.2 Storm drainage
495(1)
23.4 On-site sanitation
495(4)
23.4.1 Latrines
496(1)
23.4.1.1 Pit latrine
496(1)
23.4.1.2 VIP latrines
496(1)
23.4.1.3 Pour-flush latrines
497(1)
23.4.1.4 Composting latrines
497(1)
23.4.1.5 Communal latrines
497(1)
23.4.2 Septic tank systems
497(1)
23.4.3 Aqua privies
498(1)
23.4.4 Urine diverting dry toilets
498(1)
23.4.5 New technologies
498(1)
23.5 Off-site sanitation
499(3)
23.5.1 Bucket latrines
499(1)
23.5.2 Vault latrines
499(1)
23.5.3 Conventional sewerage
500(1)
23.5.3.1 Septicity
500(1)
23.5.3.2 Blockage
500(1)
23.5.4 Unconventional sewerage SOO
23.5.4.1 Simplified sewerage
500(1)
23.5.4.2 Settled sewerage
501(1)
23.6 Storm drainage
502(4)
23.6.1 Flooding
502(1)
23.6.2 Open drainage
503(2)
23.6.2.1 Open channels
503(1)
23.6.2.2 Road-as-drain
504(1)
23.6.3 Closed drainage
505(1)
23.6.3.1 Conventional drainage
505(1)
23.6.3.2 Dual drainage
506(1)
23.6.4 Stormwater management
506(1)
23.7 Grey water management
506(1)
23.7.1 Options
507(1)
Problems
507(1)
Key sources
508(1)
References
508(3)
24 Towards sustainable urban water management 511(30)
24.1 Introduction
511(3)
24.1.1 Sustainable development
511(1)
24.1.2 Sustainability
512(1)
24.1.3 Sustainable urban water management
513(1)
24.1.4 Transition states
513(1)
24.2 Sustainability in urban drainage
514(6)
24.2.1 Objectives
514(1)
24.2.2 Strategies
514(5)
24.2.2.1 Water transport
515(2)
24.2.2.2 Mixing of industrial and domestic wastes
517(1)
24.2.2.3 Mixing of stormwater and wastewater
518(1)
24.2.3 Integration
519(1)
24.2.4 Does size matter?
519(1)
24.3 Steps in the right direction
520(3)
24.3.1 Domestic grey water recycling
520(1)
24.3.2 Nutrient recycling
521(1)
24.3.3 Heat recovery
522(1)
24.3.4 Disposal of domestic sanitary waste
523(1)
24.4 Assessing sustainability
523(4)
24.5 Resilience
527(5)
24.5.1 Definitions and objectives
527(1)
24.5.2 Resilience and sustainability
528(1)
24.5.3 Resilience in strategic planning
528(4)
24.6 Urban futures
532(4)
Problems
536(1)
Key sources
536(1)
References
536(5)
Index 541
Professor David Butler is Co-director of the Centre for Water Systems at the University of Exeter, UK. Dr Christos Makropoulos is an assistant professor at the National Technical University of Athens and the Chief Information Officer of KWR Watercycle Research Institute in the Netherlands. Dr Chris Digman is a chartered civil engineer working for MWH in UK. He co-developed the first urban drainage research framework for the UKs Environment Agency. Professor John Davies is Emeritus Professor of Civil Engineering at Coventry University, UK.