Atjaunināt sīkdatņu piekrišanu

E-grāmata: User-Friendly Introduction to Lebesgue Measure and Integration

  • Formāts: 221 pages
  • Sērija : Student Mathematical Library
  • Izdošanas datums: 30-Dec-2015
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470427375
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 62,59 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 221 pages
  • Sērija : Student Mathematical Library
  • Izdošanas datums: 30-Dec-2015
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470427375
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

A User-Friendly Introduction to Lebesgue Measure and Integration provides a bridge between an undergraduate course in Real Analysis and a first graduate-level course in Measure Theory and Integration. The main goal of this book is to prepare students for what they may encounter in graduate school, but will be useful for many beginning graduate students as well. The book starts with the fundamentals of measure theory that are gently approached through the very concrete example of Lebesgue measure. With this approach, Lebesgue integration becomes a natural extension of Riemann integration.

Next, $L^p$-spaces are defined. Then the book turns to a discussion of limits, the basic idea covered in a first analysis course. The book also discusses in detail such questions as: When does a sequence of Lebesgue integrable functions converge to a Lebesgue integrable function? What does that say about the sequence of integrals? Another core idea from a first analysis course is completeness. Are these $L^p$-spaces complete? What exactly does that mean in this setting?

This book concludes with a brief overview of General Measures. An appendix contains suggested projects suitable for end-of-course papers or presentations.

The book is written in a very reader-friendly manner, which makes it appropriate for students of varying degrees of preparation, and the only prerequisite is an undergraduate course in Real Analysis.
Preface vii
Chapter 0 Review of Riemann Integration
1(14)
§0.1 Basic Definitions
1(4)
§0.2 Criteria for Riemann Integrability
5(5)
§0.3 Properties of the Riemann Integral
10(1)
§0.4 Exercises
11(4)
Chapter 1 Lebesgue Measure
15(42)
§1.1 Lebesgue Outer Measure
15(14)
§1.2 Lebesgue Measure
29(17)
§1.3 A Nonmeasurable Set
46(6)
§1.4 Exercises
52(5)
Chapter 2 Lebesgue Integration
57(50)
§2.1 Measurable Functions
57(10)
§2.2 The Lebesgue Integral
67(13)
§2.3 Properties of the Lebesgue Integral
80(8)
§2.4 The Lebesgue Dominated Convergence Theorem
88(11)
§2.5 Further Notes on Integration
99(3)
§2.6 Exercises
102(5)
Chapter 3 Lp spaces
107(46)
§3.1 L1[ a, b]
107(13)
§3.2 Lp Spaces
120(11)
§3.3 Approximations in Lp [ a, b]
131(3)
§3.4 L2[ a, b]
134(5)
§3.5 L2 Theory of Fourier Series
139(10)
§3.6 Exercises
149(4)
Chapter 4 General Measure Theory
153(56)
§4.1 Measure Spaces
153(12)
§4.2 Measurable Functions
165(8)
§4.3 Integration
173(12)
§4.4 Measures from Outer Measures
185(11)
§4.5 Signed Measures
196(7)
§4.6 Exercises
203(6)
Ideas for Projects 209(8)
References 217(2)
Index 219
Gail S. Nelson, Carleton College, Northfield, MN, USA.