Atjaunināt sīkdatņu piekrišanu

E-grāmata: Vehicle Dynamics: Theory and Application

  • Formāts: EPUB+DRM
  • Izdošanas datums: 22-May-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319534411
  • Formāts - EPUB+DRM
  • Cena: 118,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 22-May-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319534411

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This intermediate textbook is appropriate for students in vehicle dynamics courses, in their last year of undergraduate study or their first year of graduate study. It is also appropriate for mechanical engineers, automotive engineers, and researchers in the area of vehicle dynamics for continuing education or as a reference. It addresses fundamental and advanced topics, and a basic knowledge of kinematics and dynamics, as well as numerical methods, is expected. The contents are kept at a theoretical-practical level, with a strong emphasis on application. This third edition has been reduced by 25%, to allow for coverage over one semester, as opposed to the previous edition that needed two semesters for coverage. The textbook is composed of four parts: Vehicle Motion: covers tire dynamics, forward vehicle dynamics, and driveline dynamicsVehicle Kinematics: covers applied kinematics, applied mechanisms, steering dynamics, and suspension mechanismsVehicle Dynamics: covers appli

ed dynamics, vehicle planar dynamics, and vehicle roll dynamicsVehicle Vibration: covers applied vibrations, vehicle vibrations, and suspension optimization Vehicle dynamics concepts are covered in detail, with a concentration on their practical uses. Also provided are related theorems and formal proofs, along with case examples. Readers appreciate the user-friendly presentation of the science and engineering of the mechanical aspects of vehicles, and learn how to analyze and optimize vehicles" handling and ride dynamics. 

Tire Dynamics.- Forward Vehicle Dynamics.- Driveline Dynamics.- Applied Kinematics.- Applied Mechanisms.- Steering Dynamics.- Suspension Mechanisms.- Applied Dynamics.- Vehicle Planar Dynamics.- Vehicle Roll Dynamics.- Applied Vibrations.- Vehicle Vibrations.- Suspension Optimization.

Recenzijas

Selected by Choice magazine as an Outstanding Academic Title for 2017

This work remains one of the best organized and pedagogically sound treatments of the dynamics of vehicles available. It is well suited for a course in vehicle dynamics for upper-level undergraduate and graduate students in mechanical engineering. Summing Up: Essential. Upper-division undergraduates and above. (A. M. Strauss, Choice, Vol. 55 (4), December, 2017)

Preface xix
I Vehicle Motion
1(224)
1 Tire Dynamics
3(112)
1.1 Tire and Rim Fundamentals
3(26)
1.1.1 Tires and Sidewall Information
3(11)
1.1.2 Tire Components
14(3)
1.1.3 Radial and Non-Radial Tires
17(3)
1.1.4 Tread
20(3)
1.1.5 Tireprint
23(1)
1.1.6 Wheel and Rim
23(6)
1.2 Vehicle Classifications
29(6)
1.2.1 ISO and FHWA Classification
29(3)
1.2.2 Passenger Car Classifications
32(2)
1.2.3 Passenger Car Body Styles
34(1)
1.3 Tire Coordinate Frame and Tire Force System
35(3)
1.4 Tire Stiffness
38(5)
1.5 Effective Radius
43(14)
1.6 * Tireprint Forces of a Static Tire
57(6)
1.6.1 * Static Tire. Normal Stress
58(3)
1.6.2 * Static Tire, Tangential Stresses
61(2)
1.7 Rolling Resistance
63(11)
1.7.1 Effect of Speed on the Rolling Friction Coefficient
66(4)
1.7.2 Effect of Inflation Pressure and Load on the Rolling Friction Coefficient
70(3)
1.7.3 * Effect of Sideslip Angle on Rolling Resistance
73(1)
1.7.4 * Effect of Camber Angle on Rolling Resistance
73(1)
1.8 Longitudinal Force
74(9)
1.9 Lateral Force
83(10)
1.10 Camber Force
93(6)
1.11 Tire Force
99(5)
1.12 Summary
104(2)
1.13 Key Symbols
106(9)
Exercises
109(6)
2 Forward Vehicle Dynamics
115(58)
2.1 Parked Car on a Level Road
115(6)
2.2 Parked Car on an Inclined Road
121(5)
2.3 Accelerating Car on a Level Road
126(5)
2.4 Accelerating Car on an Inclined Road
131(10)
2.5 Parked Car on a Banked Road
141(5)
2.6 * Optimal Drive and Brake Force Distribution
146(6)
2.7 * Vehicles With More Than Two Axles
152(4)
2.8 * Vehicles on a Crest and Dip
156(7)
2.8.1 * Vehicles on a Crest
156(5)
2.8.2 * Vehicles on a Dip
161(2)
2.9 Summary
163(2)
2.10 Key Symbols
165(8)
Exercises
167(6)
3 Driveline Dynamics
173(52)
3.1 Engine Dynamics
173(7)
3.2 Driveline and Efficiency
180(6)
3.3 Gearbox and Clutch Dynamics
186(8)
3.4 Gearbox Design
194(18)
3.4.1 Geometric Ratio Gearbox Design
195(14)
3.4.2 * Progressive Ratio Gearbox Design
209(3)
3.5 Summary
212(2)
3.6 Key Symbols
214(11)
Exercises
216(9)
II Vehicle Kinematics
225(280)
4 * Applied Kinematics
227(84)
4.1 Rotation About Global Cartesian Axes
227(5)
4.2 Successive Rotation About Global Cartesian Axes
232(1)
4.3 Rotation About Local Cartesian Axes
233(4)
4.4 Successive Rotation About Local Cartesian Axes
237(8)
4.5 General Transformation
245(7)
4.6 Local and Global Rotations
252(1)
4.7 Axis-angle Rotation
253(5)
4.8 Rigid Body Motion
258(3)
4.9 Angular Velocity
261(8)
4.10 * Time Derivative and Coordinate Frames
269(9)
4.11 Rigid Body Velocity
278(4)
4.12 Angular Acceleration
282(5)
4.13 Rigid Body Acceleration
287(3)
4.14 * Screw Motion
290(11)
4.15 Summary
301(3)
4.16 Key Symbols
304(7)
Exercises
305(6)
5 Applied Mechanisms
311(68)
5.1 Four-Bar Linkage
311(20)
5.2 Slider-Crank Mechanism
331(7)
5.3 Inverted Slider-Crank Mechanism
338(6)
5.4 Instant Center of Rotation
344(12)
5.5 Coupler Point Curve
356(7)
5.5.1 Coupler Point Curve for Four-Bar Linkages
356(2)
5.5.2 Coupler Point Curve for a Slider-Crank Mechanism
358(4)
5.5.3 Coupler Point Curve for Inverted Slider-Crank Mechanism
362(1)
5.6 * Universal Joint
363(8)
5.7 Summary
371(2)
5.8 Key Symbols
373(6)
Exercises
374(5)
6 Steering Dynamics
379(68)
6.1 Kinematic Steering
379(17)
6.2 Vehicles with More Than Two Axles
396(3)
6.3 * Vehicle with Trailer
399(4)
6.4 Steering Mechanisms
403(6)
6.5 * Four wheel steering
409(17)
6.6 * Steering Mechanism Optimization
426(11)
6.7 Summary
437(1)
6.8 Key Symbols
438(9)
Exercises
440(7)
7 Suspension Mechanisms
447(58)
7.1 Solid Axle Suspension
447(10)
7.2 Independent Suspension
457(5)
7.3 Roll Center and Roll Axis
462(13)
7.4 * Car Tire Relative Angles
475(6)
7.4.1 * Toe
475(3)
7.4.2 * Caster Angle
478(1)
7.4.3 * Camber
479(1)
7.4.4 * Thrust Angle
480(1)
7.5 * Suspension Requirements and Coordinate Frames
481(12)
7.5.1 * Kinematic Requirements
481(1)
7.5.2 * Dynamic Requirements
482(2)
7.5.3 * Wheel, wheel-body, and tire Coordinate Frames
484(9)
7.6 Summary
493(2)
7.7 Key Symbols
495(10)
Exercises
497(8)
III Vehicle Dynamics
505(218)
8 * Applied Dynamics
507(58)
8.1 Elements of Dynamics
507(10)
8.1.1 Force and Moment
507(1)
8.1.2 Momentum
508(1)
8.1.3 Vectors
509(2)
8.1.4 Equation of Motion
511(1)
8.1.5 Work and Energy
511(6)
8.2 Rigid Body Translational Dynamics
517(3)
8.3 Rigid Body Rotational Dynamics
520(8)
8.4 Mass Moment Matrix
528(10)
8.5 Lagrange's Form of Newton's Equations of Motion
538(6)
8.6 Lagrangian Mechanics
544(11)
8.7 Summary
555(2)
8.8 Key Symbols
557(8)
Exercises
558(7)
9 Vehicle Planar Dynamics
565(106)
9.1 Vehicle Coordinate Frame
565(5)
9.2 Rigid Vehicle Newton-Euler Dynamics
570(7)
9.3 Force System Acting on a Rigid Vehicle
577(16)
9.3.1 Tire Force and Body Force Systems
578(4)
9.3.2 Tire Lateral Force
582(1)
9.3.3 Two-wheel Model and Body Force Components
583(10)
9.4 Two-wheel Rigid Vehicle Dynamics
593(11)
9.5 Steady-State Turning
604(24)
9.6 * Linearized Model for a Two-Wheel Vehicle
628(4)
9.7 * Transient Response
632(27)
9.8 Summary
659(1)
9.9 Key Symbols
660(11)
Exercises
662(9)
10 * Vehicle Roll Dynamics
671(52)
10.1 * Vehicle Coordinate and DOF
671(1)
10.2 * Equations of Motion
672(4)
10.3 * Vehicle Force System
676(13)
10.3.1 * Tire and Body Force Systems
676(3)
10.3.2 * Tire Lateral Force
679(3)
10.3.3 * Body Force Components on a Two-wheel Model
682(7)
10.4 * Two-wheel Rigid Vehicle Dynamics
689(3)
10.5 * Steady-State Motion
692(4)
10.6 * Transient Response
696(15)
10.7 Summary
711(1)
10.8 Key Symbols
712(11)
Exercises
715(8)
IV Vehicle Vibration
723(222)
11 Applied Vibrations
725(94)
11.1 Mechanical Vibration Elements
725(8)
11.2 Newton's Method and Vibrations
733(7)
11.3 Frequency Response of Vibrating Systems
740(40)
11.3.1 Forced Excitation
741(10)
11.3.2 Base Excitation
751(12)
11.3.3 Eccentric Excitation
763(6)
11.3.4 * Eccentric Base Excitation
769(6)
11.3.5 * Classification for the Frequency Responses of One-DOF Forced Vibration Systems
775(5)
11.4 Time Response of Vibrating Systems
780(12)
11.5 Vibration Application and Measurement
792(5)
11.6 * Vibration Optimization Theory
797(11)
11.7 Summary
808(2)
11.8 Key Symbols
810(9)
Exercises
813(6)
12 Vehicle Vibrations
819(64)
12.1 Lagrange Method and Dissipation Function
819(10)
12.2 * Quadratures
829(7)
12.3 Natural Frequencies and Mode Shapes
836(7)
12.4 Bicycle Car and Body Pitch Mode
843(5)
12.5 Half Car and Body Roll Mode
848(5)
12.6 Full Car Vibrating Model
853(8)
12.7 * Quarter Car Model
861(13)
12.7.1 * Mathematical Model
861(2)
12.7.2 * Frequency Response
863(5)
12.7.3 * Natural and Invariant Frequencies
868(6)
12.8 Summary
874(1)
12.9 Key Symbols
875(8)
Exercises
878(5)
13 Suspension Optimization
883(62)
13.1 Mathematical Model
883(6)
13.2 Frequency Response
889(4)
13.3 RMS Suspension Optimization
893(21)
13.4 * Time Response Optimization
914(6)
13.5 * RMS Quarter Car Optimization
920(12)
13.6 * Optimization Based on Natural Frequency and Wheel Travel
932(4)
13.7 Summary
936(2)
13.8 Key Symbols
938(7)
Exercises
940(5)
A Frequency Response Curves 945(6)
B Trigonometric Formulas 951(4)
C Unit Conversions 955(4)
References 959(6)
Index 965
Reza N. Jazar is Professor and Head of Mechanical and Automotive Engineering at the School of Aerospace, Mechanical and Manufacturing Engineering at RMIT University in Australia.