Atjaunināt sīkdatņu piekrišanu

Virtual Reality: Concepts and Technologies [Hardback]

Edited by , Edited by , Edited by
  • Formāts: Hardback, 432 pages, height x width: 246x174 mm, weight: 929 g
  • Izdošanas datums: 27-Jul-2011
  • Izdevniecība: CRC Press
  • ISBN-10: 0415684714
  • ISBN-13: 9780415684712
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 210,77 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 432 pages, height x width: 246x174 mm, weight: 929 g
  • Izdošanas datums: 27-Jul-2011
  • Izdevniecība: CRC Press
  • ISBN-10: 0415684714
  • ISBN-13: 9780415684712
Citas grāmatas par šo tēmu:
A manual for both designers and users, comprehensively presenting the current state of experts' knowledge on virtual reality (VR) in computer science, mechanics, optics, acoustics, physiology, psychology, ergonomics, ethics, and related area. Designed as a reference book and design guide to help the reader develop a VR project, it presents the reader with the importance of the users needs and various aspects of the human computer interface (HCI). It further treats technical aspects of VR, hardware and software implementations, and details on the sensory and psycho-sensory interfaces. Providing various concepts and technologies, including mathematics and modelling techniques, it allows the reader to formalize, conceptualize and construct a virtual reality project from original thought to application. This book is intended for engineers, computer scientists and computer game developers working on various VR applications. It can further serve as an educational tool in Virtual Reality courses for senior graduate and postgraduate students.
Preface xv
About the editors xvii
List of authors xix
The French Association for Virtual Reality and Mixed Reality xxi
Section I Introduction
1 Introduction to virtual reality
3(8)
1.1 Foundation of virtual reality
3(6)
1.1.1 Introduction
3(2)
1.1.2 Definitions of virtual reality
5(7)
1.1.2.1 Origin and simplistic image of virtual reality
5(1)
1.1.2.2 Purpose of virtual reality
6(1)
1.1.2.3 Functional definition
7(1)
1.1.2.4 Technical definition
7(2)
1.2 Book outline
9(1)
Bibliographic references
10(1)
2 Theoretical and pragmatic approach to virtual reality
11(38)
2.1 Human behaviour in a real environment
11(1)
2.2 Behavioural interfaces
12(4)
2.2.1 Hardware design
12(1)
2.2.2 Transparency of an interface
13(2)
2.2.3 Commercial interfaces and custom interfaces
15(1)
2.3 "Instrumental" approach for immersion and interaction
16(8)
2.3.1 Fundamental concepts of behavioural interfacing
16(3)
2.3.2 Behavioural interfaces, schema and metaphors
19(3)
2.3.2.1 Concept of schema
19(2)
2.3.2.2 Use of schemas, metaphors or sensorimotor substitutions
21(1)
2.3.3 Consistency and discrepancy of virtual environment
22(1)
2.3.4 Interface and multimodality
23(1)
2.4 Method of designing and assessing a virtual reality environment
24(10)
2.4.1 VR reference model
24(2)
2.4.2 Virtual behavioural primitives
26(1)
2.4.3 Behavioural Software Aids
27(2)
2.4.3.1 Sensorimotor Software Aids
27(1)
2.4.3.2 Cognitive Software Aids
28(1)
2.4.4 Design approach
29(3)
2.4.5 Assessment approach
32(2)
2.5 Examples of designing and assessing a virtual reality environment
34(8)
2.5.1 Virtual shop for experimentation
34(5)
2.5.1.1 Introduction
34(1)
2.5.1.2 Analysis of the problem based on our general diagram of VR
34(1)
2.5.1.3 Visual observation of products
35(2)
2.5.1.4 Natural handling of 3D products with 6DOF
37(1)
2.5.1.5 Navigation in the shop
37(2)
2.5.2 Training on railway infrastructure using virtual reality
39(12)
2.5.2.1 Analysis of the problem on the basis of our general VR diagram
39(1)
2.5.2.2 2D movement on railway tracks
40(1)
2.5.2.3 Orientation on tracks
41(1)
2.5.2.4 Visual immersion
41(1)
2.5.2.5 Natural handling of objects in 3D with 3DOF
42(1)
2.6 Discussion on our approach for the subject's immersion and interaction
42(2)
2.7 Perspectives and conclusions
44(1)
Bibliographic references
44(5)
Section II The Human Being In Virtual Environments
3 Human senses
49(32)
3.1 Introduction
49(2)
3.2 Vision
51(19)
3.2.1 The human visual system
52(5)
3.2.1.1 The entire visual system
52(1)
3.2.1.2 The eye
53(1)
3.2.1.3 Accommodation and convergence
53(1)
3.2.1.4 The retina
54(2)
3.2.1.5 The concept of spatial frequency
56(1)
3.2.2 Visual perception of depth
57(6)
3.2.2.1 Cognitive perception by monocular cues
57(3)
3.2.2.2 Convergence and retinal disparity
60(2)
3.2.2.3 Binocular vision and diplopia
62(1)
3.2.2.4 Neurophysiological mechanisms of the perception of depth
63(1)
3.2.3 Psychophysical characteristics of vision
63(7)
3.2.3.1 Light sensitivity
64(1)
3.2.3.2 Frequency sensitivities
64(1)
3.2.3.3 Visual acuity
65(2)
3.2.3.4 Field of vision
67(1)
3.2.3.5 Maximum temporal frequency in vision
68(1)
3.2.3.6 Psychophysical characteristics of stereoscopic vision
68(2)
3.2.3.7 Colour discrimination
70(1)
3.2.3.8 Field dependence-independence
70(1)
3.3 Cutaneous sensitivity
70(6)
3.3.1 The skin
70(1)
3.3.2 Classification of biological sensors
71(5)
3.3.2.1 Nociceptors
71(1)
3.3.2.2 Thermoreceptors
71(2)
3.3.2.3 Mechanoreceptors
73(3)
3.4 Proprioception
76(3)
3.4.1 Introduction
76(1)
3.4.2 Physics of gravity and accelerations
76(1)
3.4.3 Vestibular apparatus and kinaesthetic canals
76(3)
Bibliographic references
79(2)
4 Interaction between virtual reality and behavioural sciences
81(12)
4.1 Introduction
81(1)
4.2 Contribution of virtual reality to behavioural sciences
82(4)
4.2.1 Basic research
82(2)
4.2.2 Applied research
84(2)
4.2.2.1 Training, learning and simulation
84(1)
4.2.2.2 Therapy and rehabilitation
85(1)
4.2.2.3 Visualization in scientific computing
85(1)
4.3 Contribution of behavioural sciences to virtual reality
86(3)
4.3.1 What are the correct parameters?
86(1)
4.3.2 Realism
87(1)
4.3.3 The concept of "real time"
88(1)
4.4 Conclusion
89(1)
Bibliographic references
90(3)
5 Immersion and presence
93(12)
5.1 Introduction
93(1)
5.2 Immersion
94(3)
5.2.1 Sensory richness
94(1)
5.2.2 Interaction
95(1)
5.2.3 Structural factors of immersion
95(2)
5.2.3.1 Coherence
96(1)
5.2.3.2 Mapping
96(1)
5.3 Presence
97(2)
5.3.1 Questionnaires and subjective measurements
97(1)
5.3.2 Physiological measurements
98(1)
5.3.3 Behavioural measurements
98(7)
5.3.3.1 Performance
98(1)
5.3.3.2 Reflex actions
98(1)
5.3.3.3 Sensorimotor control
99(1)
5.4 Conclusion
99(1)
Bibliographic references
100(5)
Section III Behavioural interfaces
6 Location sensors
105(18)
6.1 Introduction
105(2)
6.1.1 Spatial location
105(1)
6.1.2 Location sensor and command interface
106(1)
6.2 Mechanical trackers
107(2)
6.2.1 Mechanical trackers measuring distances
107(1)
6.2.2 Mechanical trackers determining an orientation, speed or acceleration
107(2)
6.2.2.1 Inclinometers
108(1)
6.2.2.2 Gyroscopes and rate gyros
108(1)
6.2.2.3 Accelerometers
109(1)
6.3 Electromagnetic trackers
109(4)
6.3.1 Electromagnetic trackers using alternating magnetic field
109(2)
6.3.2 Electromagnetic trackers using impulsive field
111(1)
6.3.3 Characteristics of electromagnetic trackers
112(1)
6.3.4 Compass
113(1)
6.4 Optical trackers
113(7)
6.4.1 Introduction
113(1)
6.4.2 Principle
114(1)
6.4.3 Classification of trackers
115(1)
6.4.4 Some recently launched systems
116(4)
6.4.5 Conclusion
120(1)
Bibliographic references
120(3)
7 Manual motor interfaces
123(14)
7.1 Introduction
123(1)
7.1.1 Location sensor and dataglove
123(1)
7.1.2 Location sensor and command interface
123(1)
7.2 Data gloves
124(6)
7.2.1 Fibre optic gloves
124(2)
7.2.2 Detection of hand movements by cameras
126(1)
7.2.3 Resistance variation gloves
127(1)
7.2.4 Hall effect gloves
128(1)
7.2.5 Special case: binary command glove
129(1)
7.2.6 Conclusion
129(1)
7.3 Command interfaces
130(6)
7.3.1 3D Mouse
131(1)
7.3.2 3D Mouse with force feedback
132(2)
7.3.3 Six degrees of freedom command interface for a large screen
134(1)
7.3.4 Non-manual command interfaces
135(1)
Bibliographic references
136(1)
8 Hardware devices of force feedback interfaces
137(42)
8.1 Introduction
137(1)
8.2 Problems and classification of force feedback interfaces
137(3)
8.3 Design of the force feedback interfaces
140(14)
8.3.1 Performance criteria and specifications
140(6)
8.3.1.1 Concept of transparency
140(1)
8.3.1.2 Necessity of specifications
141(1)
8.3.1.3 Posture and type of grip
141(1)
8.3.1.4 Work space and position resolution
142(1)
8.3.1.5 Static capacity and force resolution
143(2)
8.3.1.6 Dynamics, stiffness, inertia and bandwidth
145(1)
8.3.1.7 Report
145(1)
8.3.2 Modelling and dimensioning
146(5)
8.3.2.1 Problem
146(1)
8.3.2.2 Methods and tools
146(4)
8.3.2.3 Optimisation
150(1)
8.3.3 Technical constraints
151(3)
8.3.3.1 Mechanical architecture of the force feedback interface
151(1)
8.3.3.2 Motorisation
152(1)
8.3.3.3 Reduction stages
153(1)
8.3.3.4 Transmissions
154(1)
8.3.3.5 Balancing
154(1)
8.4 The different force feedback interfaces
154(18)
8.4.1 External reaction force feedback interfaces
154(11)
8.4.1.1 The fixed interfaces with serial structure
154(3)
8.4.1.2 The parallel structure fixed interfaces
157(6)
8.4.1.3 Fixed interfaces with tight ropes
163(2)
8.4.1.4 Fixed interfaces with magnetic levitation
165(1)
8.4.2 Internal reaction force feedback interfaces
165(18)
8.4.2.1 Generic portable interfaces
166(1)
8.4.2.2 Portable interfaces for hand
167(2)
8.4.2.3 Exoskeletons for the hand
169(1)
8.4.2.4 Exoskeletons for the arm
170(2)
8.5 Report
172(1)
Bibliographic references
173(6)
9 Control of a force feedback interface
179(12)
9.1 Introduction
179(2)
9.2 Intuitive description of the haptic coupling
181(2)
9.3 Modelling of the haptic command by a network formalism
183(5)
9.3.1 Passivity
184(1)
9.3.2 Stability
185(1)
9.3.3 Application to the single degree of freedom problem
186(2)
9.4 Conclusion
188(1)
9.5 Annexe: Elements of network theory
188(2)
Bibliographic references
190(1)
10 Tactile feedback interfaces
191(20)
10.1 Introduction
191(1)
10.2 Advantage of tactile feedback interfaces in virtual reality
192(1)
10.3 Designing basics for a tactile interface
193(1)
10.4 State of the art of the tactile interfaces
194(10)
10.4.1 Tactile stimulation technologies
195(1)
10.4.2 Classification of tactile interfaces according to the domain of application
196(16)
10.4.2.1 Tactile interfaces for teleoperation and telepresence
197(1)
10.4.2.2 Tactile interfaces dedicated to the studies of tactile perception
198(4)
10.4.2.3 Tactile interfaces for sensory substitution
202(1)
10.4.2.4 Tactile interfaces for the generation of a 3D surface
202(1)
10.4.2.5 Braille interfaces for the visually impaired
203(1)
10.5 State-of-the-art summary
204(1)
10.6 Conclusion
205(1)
Bibliographic references
206(5)
11 Visual interfaces
211(36)
11.1 Introduction to visual interfaces
211(1)
11.2 Visual interfaces with fixed support
212(22)
11.2.1 Monoscopic computer screens
212(1)
11.2.2 Display of stereoscopic images on a single plane
213(4)
11.2.2.1 Separation at the screen level
213(1)
11.2.2.2 Separation by eyeglasses
214(3)
11.2.3 Large screen projection systems
217(10)
11.2.3.1 Multiple projector architecture
217(1)
11.2.3.2 Distribution of rendering from multiple PCs
218(2)
11.2.3.3 Calibration
220(2)
11.2.3.4 Stereoscopy
222(1)
11.2.3.5 Multi-user stereoscopy
223(1)
11.2.3.6 Different types of projectors
223(2)
11.2.3.7 Passive screens for video projection
225(1)
11.2.3.8 Stereoscopic flat screens
226(1)
11.2.3.9 Connected hardware motor interfaces
227(1)
11.2.4 Examples of large screen projection systems
227(7)
11.2.4.1 Visiodesks or immersive desks
227(2)
11.2.4.2 Human scale visual interfaces: visioroom (immersive room) and visiocube
229(5)
11.3 Portable visual interfaces
234(8)
11.3.1 Architecture of a head-mounted display
235(1)
11.3.2 Head-mounted displays with cathode tube screens
236(1)
11.3.3 Head-mounted displays with liquid crystal screens
237(1)
11.3.4 Optical model of a head-mounted display and related problems
237(3)
11.3.4.1 Problems in the visual quality of a head-mounted display
237(3)
11.3.5 Video eyeglasses
240(1)
11.3.5.1 Video-eyeglasses with LCD screen
240(1)
11.3.6 Head-mounted display and semi-transparent device
240(2)
11.4 Conclusion
242(1)
11.5 Annexe
242(1)
11.5.1 Restitution by volumetric images
242(1)
Bibliographic references
243(4)
12 Interaction techniques for virtual behavioural primitives
247(46)
12.1 Introduction
247(2)
12.1.1 Reminder of our approach on virtual reality
247(1)
12.1.2 Interaction
248(1)
12.2 Virtual behavioural primitives of observation
249(4)
12.2.1 Classification
249(1)
12.2.2 Visual observation
249(3)
12.2.3 Acoustic observation
252(1)
12.2.4 Tactile observation
253(1)
12.3 Wayfinding
253(9)
12.3.1 Introduction
253(1)
12.3.2 Theoretical foundations
254(2)
12.3.2.1 Cognitive map
254(1)
12.3.2.2 Egocentric and exocentric strategies
255(1)
12.3.2.3 Decision-making
255(1)
12.3.3 Wayfinding in a virtual environment
256(6)
12.3.3.1 Characteristics of the virtual world
256(2)
12.3.3.2 Copying the real world
258(1)
12.3.3.3 Addition of software aids
259(3)
12.3.4 Conclusion
262(1)
12.4 Movement
262(9)
12.4.1 Introduction
262(2)
12.4.2 Continuous control
264(5)
12.4.2.1 Movement of the person in the world
264(4)
12.4.2.2 Movement of the world in relation to the person
268(1)
12.4.2.3 Movement of the viewpoint
269(1)
12.4.3 Discrete control
269(1)
12.4.4 Programmed control
270(1)
12.4.5 Evaluations
270(1)
12.4.6 Conclusion
271(1)
12.5 Selection and manipulation
271(7)
12.5.1 Introduction
271(1)
12.5.2 Interaction techniques
272(4)
12.5.3 Accuracy
276(2)
12.5.3.1 Virtual object positioning
277(1)
12.5.3.2 Rotation of a virtual object
278(1)
12.5.3.3 Conclusion
278(1)
12.6 Application control and text input
278(10)
12.6.1 Application control
278(7)
12.6.2 Text input
285(2)
12.6.2.1 Keyboard
285(2)
12.6.3 Conclusion
287(1)
Bibliographic references
288(5)
13 Stereoscopic restitution of vision
293(20)
13.1 Creation of stereoscopic images
293(14)
13.1.1 Principle
293(6)
13.1.2 Choice of stereoscopic parameters
299(1)
13.1.3 Creation of 3D images for teleoperation
300(3)
13.1.3.1 Stereoscopic visual telepresence
300(1)
13.1.3.2 Study of stereoscopic vision
300(2)
13.1.3.3 Deductions of constraints
302(1)
13.1.3.4 Limitation of stereoscopic vision
302(1)
13.1.4 Limitation of visual strain in stereoscopic vision
303(3)
13.1.4.1 Problem of visual strain
303(1)
13.1.4.2 Frequency filtering method
304(1)
13.1.4.3 Experimental results
305(1)
13.1.4.4 Conclusion
306(1)
13.1.5 Creation of images in orthoscopic vision for a design review
306(1)
13.2 Evaluation of stereoscopic techniques
307(1)
13.2.1 Advantages of stereoscopic vision
307(1)
13.2.2 Choice of parameters of stereoscopic vision
307(1)
13.3 Conclusion
308(1)
13.4 Annexe
309(1)
13.4.1 3D Perception on a sheet
309(1)
Bibliographic references
309(4)
Section IV Tools and models for virtual environments
14 Geometric models of virtual environments
313(26)
14.1 Introduction
313(3)
14.1.1 Types of objects
314(2)
14.1.2 Properties of models
316(1)
14.2 Solid models
316(5)
14.2.1 Spatial enumeration
317(2)
14.2.2 Constructive solid geometry
319(2)
14.3 Surface models
321(5)
14.3.1 Using plane surfaces
322(1)
14.3.2 Using non-planar surfaces
322(1)
14.3.3 Nurbs surfaces
323(3)
14.4 Algorithmic geometry
326(8)
14.4.1 Transformation of a volume into surface
327(1)
14.4.2 Polygonal meshing of a scatter plot
328(3)
14.4.2.1 Methods of spatial subdivision
329(1)
14.4.2.2 Distance function methods
330(1)
14.4.2.3 Deformation methods
330(1)
14.4.2.4 Surface expansion methods
331(1)
14.4.3 Decimation of meshes
331(3)
14.4.3.1 Incremental algorithms
332(1)
14.4.3.2 Operators
332(2)
14.4.3.3 Error metrics
334(1)
14.5 Optimisation of models for virtual reality
334(4)
14.5.1 Texturing
334(2)
14.5.1.1 Introduction
334(1)
14.5.1.2 Advantages and disadvantages of textures
335(1)
14.5.2 Levels of details
336(3)
14.5.2.1 Transition command
336(1)
14.5.2.2 Generating the levels of detail
337(1)
Bibliographic references
338(1)
15 Models for visual rendering
339(28)
15.1 Rendering for virtual reality
339(2)
15.1.1 Introduction
339(1)
15.1.2 Real-time rendering
339(1)
15.1.3 Quality and perception
340(1)
15.2 Lighting and shading models
341(15)
15.2.1 Modelling the appearance
341(9)
15.2.1.1 Bidirectional reflectance distribution function
342(4)
15.2.1.2 Textures and bidirectional texture functions
346(4)
15.2.2 Modelling the lighting
350(6)
15.2.2.1 Global illumination and virtual reality
352(2)
15.2.2.2 Local illumination and virtual reality
354(2)
15.3 Rendering and perception
356(5)
15.3.1 Vision models and rendering calculations
356(3)
15.3.1.1 Vision models
356(2)
15.3.1.2 Algorithms of perceptual rendering
358(1)
15.3.2 Tone mapping
359(11)
15.3.2.1 Introduction
359(2)
Bibliographic references
361(6)
16 Models for haptic rendering
367(16)
16.1 Haptic simulation/device coupling
367(3)
16.2 Calculation of haptic rendering
370(6)
16.2.1 Rendering by impedance patterns: calculation of forces
370(1)
16.2.2 Rendering by admittance patterns: calculations of constraints
371(1)
16.2.3 Models primitive to object models (PROXY)
372(3)
16.2.3.1 Principle
372(1)
16.2.3.2 Implementation
373(1)
16.2.3.3 Benefits of virtual proxy
374(1)
16.2.4 Modelling the environment for haptic rendering
375(1)
16.3 Frequency adaptation
376(4)
16.3.1 Intermediate representations
377(3)
16.4 Haptic libraries
380(1)
16.5 Conclusion
380(1)
Bibliographic references
381(2)
17 Collision detection
383
17.1 Detection of collision between primitives
383(11)
17.1.1 Definition of collision
384(1)
17.1.2 Spatial detection between convex polyhedrons
384(3)
17.1.3 Spatial detection between any polyhedrons
387(3)
17.1.4 Temporal approaches
390(4)
17.1.4.1 Discrete temporal methods
390(1)
17.1.4.2 Continuous temporal detection
391(3)
17.1.5 Assessment of detection of collision between objects and open problems
394(1)
17.2 Detection pipeline
394(10)
17.2.1 Problem
394(1)
17.2.2 Proximity search (broad-phase)
395(3)
17.2.2.1 Strategies of detection by division of the space
395(1)
17.2.2.2 Strategies of detection by topology and kinematics
396(2)
17.2.3 Approximate detection (narrow-phase)
398(4)
17.2.3.1 Strategies of detection by bounding volumes
398(3)
17.2.3.2 Strategies using graphic hardware
401(1)
17.2.4 Continuous temporal acceleration
402(1)
17.2.5 Summary of acceleration
403(1)
17.3 Processing the collision
404(1)
17.4 Conclusion
405(1)
Bibliographic references
405
Philippe Fuchs, Professor in Mines ParisTech, School of Engineering (Paris), is the leader of the « Virtual Reality & Augmented Reality » team. His field of research is the theoretical approach of VR and its applications in industry.

Guillaume Moreau is Associate Professor at Ecole Centrale Nantes School of Engineering and his research topics are GIS, Virtual and Augmented Reality and Computer vision.

Pascal Guitton is full Professor at the University of Bordeaux. He is President of the French national association of Virtual Reality (AFRV) and the Director of Research at INRIA.