Atjaunināt sīkdatņu piekrišanu

E-grāmata: Virtual Turning Points

  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The discovery of a virtual turning point truly is a breakthrough in WKB analysis of higher order differential equations. This monograph expounds the core part of its theory together with its application to the analysis of higher order Painlevé equations of the NoumiYamada type and to the analysis of non-adiabatic transition probability problems in three levels.

As M.V. Fedoryuk once lamented, global asymptotic analysis of higher order differential equations had been thought to be impossible to construct. In 1982, however, H.L. Berk, W.M. Nevins, and K.V. Roberts published a remarkable paper in the Journal of Mathematical Physics indicating that the traditional Stokes geometry cannot globally describe the Stokes phenomena of solutions of higher order equations; a new Stokes curve is necessary.

Recenzijas

This monograph provides an introduction to the theory of virtual turning points and its applications as well as a historical view of the theory. The monograph is written for researchers and students working in mathematical sciences. (Takashi Aoki, zbMATH 1354.34003, 2017)

1 Definition and Basic Properties of Virtual Turning Points
1(50)
1.1 A Brief Survey of the Exact WKB Analysis of the Schrodinger Equation
1(18)
1.2 WKB Analysis of Higher Order Differential Equations in the Small
19(7)
1.3 The Impact of the Work [ BNR] of Berk, Nevins and Roberts
26(2)
1.4 A Virtual Turning Point---a Gift of Microlocal Analysis to the Exact WKB Analysis
28(11)
1.5 The Relevance of Virtual Turning Points and the Connection Formula for WKB Solutions of a Higher Order Differential Equation
39(2)
1.6 How to Locate a Virtual Turning Point with the Help of a Computer
41(1)
1.7 The Relevance of a Virtual Turning Point to the Bifurcation Phenomena of Stokes Curves
42(2)
1.8 s-Virtual Turning Points for Holonomic Systems
44(7)
2 Application to the Noumi-Yamada System with a Large Parameter
51(28)
2.1 Introduction
51(1)
2.2 (NY)l and (NYL)l with a Large Parameter
52(2)
2.3 Stokes Geometry of (NY)2m
54(5)
2.4 A Bidirectional Binary Tree
59(11)
2.5 Growing and Shrinking of a Bidirectional Binary Tree
70(9)
3 Exact WKB Analysis of Non-adiabatic Transition Problems for 3-Levels
79(32)
3.1 Non-adiabatic Transition Problems for Three Levels---Generalization of the Landau-Zener Model
79(4)
3.2 Examples, of Complete Stokes Geometries for Non-adiabatic Transition Problems
83(14)
3.3 Computation of Transition Probabilities
97(14)
Appendix A Integral Representation of Solutions and the Borel Resummed WKB Solutions 111(10)
References 121(4)
Index 125