|
Geometry and Complex Arithmetic |
|
|
1 | (54) |
|
|
1 | (9) |
|
|
1 | (2) |
|
Bombelli's ``Wild Thought'' |
|
|
3 | (3) |
|
Some Terminology and Notation |
|
|
6 | (1) |
|
|
7 | (1) |
|
Symbolic and Geometric Arithmetic |
|
|
8 | (2) |
|
|
10 | (4) |
|
|
10 | (1) |
|
|
10 | (2) |
|
|
12 | (2) |
|
Sine and Cosine in Terms of Euler's Formula |
|
|
14 | (1) |
|
|
14 | (16) |
|
|
14 | (1) |
|
|
14 | (2) |
|
|
16 | (4) |
|
|
20 | (2) |
|
|
22 | (5) |
|
|
27 | (3) |
|
Transformations and Euclidean Geometry* |
|
|
30 | (15) |
|
Geometry Through the Eyes of Felix Klein |
|
|
30 | (4) |
|
|
34 | (3) |
|
Three Reflections Theorem |
|
|
37 | (2) |
|
Similarities and Complex Arithmetic |
|
|
39 | (4) |
|
|
43 | (2) |
|
|
45 | (10) |
|
Complex Functions as Transformations |
|
|
55 | (67) |
|
|
55 | (2) |
|
|
57 | (7) |
|
|
57 | (2) |
|
|
59 | (1) |
|
|
60 | (4) |
|
|
64 | (15) |
|
The Mystery of Real Power Series |
|
|
64 | (3) |
|
|
67 | (3) |
|
Approximating a Power Series with a Polynomial |
|
|
70 | (1) |
|
|
71 | (1) |
|
Manipulating Power Series |
|
|
72 | (2) |
|
Finding the Radius of Convergence |
|
|
74 | (3) |
|
|
77 | (2) |
|
|
79 | (5) |
|
|
79 | (1) |
|
The Geometry of the Mapping |
|
|
80 | (1) |
|
|
81 | (3) |
|
|
84 | (6) |
|
Definitions and Identities |
|
|
84 | (2) |
|
Relation to Hyperbolic Functions |
|
|
86 | (2) |
|
The Geometry of the Mapping |
|
|
88 | (2) |
|
|
90 | (8) |
|
Example: Fractional Powers |
|
|
90 | (2) |
|
Single-Valued Branches of a Multifunction |
|
|
92 | (3) |
|
Relevance to Power Series |
|
|
95 | (1) |
|
An Example with Two Branch Points |
|
|
96 | (2) |
|
|
98 | (4) |
|
Inverse of the Exponential Function |
|
|
98 | (2) |
|
The Logarithmic Power Series |
|
|
100 | (1) |
|
|
101 | (1) |
|
Averaging over Circles* |
|
|
102 | (9) |
|
|
102 | (3) |
|
Averaging over Regular Polygons |
|
|
105 | (3) |
|
|
108 | (3) |
|
|
111 | (11) |
|
Mobius Transformations and Inversion |
|
|
122 | (67) |
|
|
122 | (2) |
|
Definition of Mobius Transformations |
|
|
122 | (1) |
|
Connection with Einstein's Theory of Relativity* |
|
|
122 | (1) |
|
Decomposition into Simple Transformations |
|
|
123 | (1) |
|
|
124 | (12) |
|
Preliminary Definitions and Facts |
|
|
124 | (2) |
|
|
126 | (2) |
|
Construction Using Orthogonal Circles |
|
|
128 | (2) |
|
|
130 | (3) |
|
|
133 | (1) |
|
|
133 | (3) |
|
Three Illustrative Applications of Inversion |
|
|
136 | (3) |
|
A Problem on Touching Circles |
|
|
136 | (1) |
|
Quadrilaterals with Orthogonal Diagonals |
|
|
137 | (1) |
|
|
138 | (1) |
|
|
139 | (9) |
|
|
139 | (1) |
|
|
140 | (3) |
|
Transferring Complex Functions to the Sphere |
|
|
143 | (1) |
|
Behaviour of Functions at Infinity |
|
|
144 | (2) |
|
Stereographic Formulae* |
|
|
146 | (2) |
|
Mobius Transformations: Basic Results |
|
|
148 | (8) |
|
Preservation of Circles, Angles, and Symmetry |
|
|
148 | (1) |
|
Non-Uniqueness of the Coefficients |
|
|
149 | (1) |
|
|
150 | (1) |
|
|
151 | (1) |
|
|
152 | (2) |
|
|
154 | (2) |
|
Mobius Transformations as Matrices* |
|
|
156 | (6) |
|
Evidence of a Link with Linear Algebra |
|
|
156 | (1) |
|
The Explanation: Homogeneous Coordinates |
|
|
157 | (1) |
|
Eigenvectors and Eigenvalues* |
|
|
158 | (3) |
|
Rotations of the Sphere* |
|
|
161 | (1) |
|
Visualization and Classification* |
|
|
162 | (10) |
|
|
162 | (2) |
|
Elliptic, Hyperbolic, and Loxodromic types |
|
|
164 | (2) |
|
Local Geometric Interpretation of the Multiplier |
|
|
166 | (2) |
|
Parabolic Transformations |
|
|
168 | (1) |
|
Computing the Multiplie* |
|
|
169 | (1) |
|
Eigenvalue Interpretation of the Multiplier* |
|
|
170 | (2) |
|
Decomposition into 2 or 4 Reflections* |
|
|
172 | (4) |
|
|
172 | (1) |
|
|
172 | (1) |
|
|
173 | (1) |
|
|
174 | (1) |
|
|
175 | (1) |
|
Automorphisms of the Unit Disc* |
|
|
176 | (5) |
|
Counting Degrees of Freedom |
|
|
176 | (1) |
|
Finding the Formula via the Symmetry Principle |
|
|
177 | (1) |
|
Interpreting the Formula Geometrically* |
|
|
178 | (2) |
|
Introduction to Riemann's Mapping Theorem |
|
|
180 | (1) |
|
|
181 | (8) |
|
Differentiation: The Amplitwist Concept |
|
|
189 | (27) |
|
|
189 | (1) |
|
|
189 | (2) |
|
Local Description of Mappings in the Plane |
|
|
191 | (3) |
|
|
191 | (1) |
|
|
192 | (1) |
|
|
193 | (1) |
|
The Complex Derivative as Amplitwist |
|
|
194 | (5) |
|
The Real Derivative Re-Examined |
|
|
194 | (1) |
|
|
195 | (2) |
|
|
197 | (1) |
|
|
198 | (1) |
|
|
199 | (1) |
|
|
200 | (4) |
|
|
200 | (1) |
|
Conformality Throughout a Region |
|
|
201 | (2) |
|
Conformality and the Riemann Sphere |
|
|
203 | (1) |
|
|
204 | (3) |
|
|
204 | (1) |
|
Breakdown of Conformality |
|
|
205 | (1) |
|
|
206 | (1) |
|
The Cauchy-Riemann Equations |
|
|
207 | (4) |
|
|
207 | (1) |
|
The Geometry of Linear Transformations |
|
|
208 | (1) |
|
The Cauchy-Riemann Equations |
|
|
209 | (2) |
|
|
211 | (5) |
|
Further Geometry of Differentiation |
|
|
216 | (51) |
|
|
216 | (3) |
|
|
216 | (1) |
|
|
216 | (1) |
|
|
217 | (2) |
|
An Intimation of Rigidity |
|
|
219 | (3) |
|
Visual Differentiation of log(z) |
|
|
222 | (1) |
|
|
223 | (3) |
|
|
223 | (1) |
|
|
224 | (1) |
|
Addition and Multiplication |
|
|
225 | (1) |
|
Polynomials, Power Series, and Rational Functions |
|
|
226 | (3) |
|
|
226 | (1) |
|
|
227 | (1) |
|
|
228 | (1) |
|
Visual Differentiation of the Power Function |
|
|
229 | (2) |
|
Visual Differentiation of exp(z) |
|
|
231 | (1) |
|
Geometric Solution of E'= E |
|
|
232 | (2) |
|
An Application of Higher Derivatives: Curvature* |
|
|
234 | (7) |
|
|
234 | (1) |
|
Analytic Transformation of Curvature |
|
|
235 | (3) |
|
|
238 | (3) |
|
|
241 | (6) |
|
|
241 | (1) |
|
Two Kinds of Elliptical Orbit |
|
|
241 | (2) |
|
Changing the First into the Second |
|
|
243 | (1) |
|
|
244 | (1) |
|
|
245 | (1) |
|
The Kasner-Arnol'd Theorem |
|
|
246 | (1) |
|
|
247 | (11) |
|
|
247 | (2) |
|
|
249 | (1) |
|
|
250 | (1) |
|
Preservation of Identities |
|
|
251 | (1) |
|
Analytic Continuation via Reflections |
|
|
252 | (6) |
|
|
258 | (9) |
|
|
267 | (71) |
|
|
267 | (11) |
|
|
267 | (2) |
|
Some Facts from Non-Euclidean Geometry |
|
|
269 | (1) |
|
Geometry on a Curved Surface |
|
|
270 | (3) |
|
Intrinsic Versus Extrinsic Geometry |
|
|
273 | (1) |
|
|
273 | (2) |
|
Surfaces of Constant Curvature |
|
|
275 | (2) |
|
The Connection with Mobius Transformations |
|
|
277 | (1) |
|
|
278 | (15) |
|
The Angular Excess of a Spherical Triangle |
|
|
278 | (1) |
|
|
279 | (4) |
|
A Conformal Map of the Sphere |
|
|
283 | (3) |
|
Spatial Rotation as Mobius Transformations |
|
|
286 | (4) |
|
Spatial Rotations and Quaternions |
|
|
290 | (3) |
|
|
293 | (35) |
|
The Tractrix and the Pseudosphere |
|
|
293 | (2) |
|
The Constant Curvature of the Pseudosphere |
|
|
295 | (1) |
|
A Conformal Map of the Pseudosphere |
|
|
296 | (2) |
|
Beltrami's Hyperbolic Plane |
|
|
298 | (3) |
|
Hyperbolic Lines and Reflections |
|
|
301 | (4) |
|
The Bolyai-Lobachevsky Formula |
|
|
305 | (1) |
|
The Three Types of Direct Motion |
|
|
306 | (5) |
|
Decomposition into Two Reflections |
|
|
311 | (2) |
|
The Angular Excess of a Hyperbolic Triangle |
|
|
313 | (2) |
|
|
315 | (4) |
|
Motions of the Poincare Disc |
|
|
319 | (3) |
|
The Hemisphere Model and Hyperbolic Space |
|
|
322 | (6) |
|
|
328 | (10) |
|
Winding Numbers and Topology |
|
|
338 | (39) |
|
|
338 | (3) |
|
|
338 | (1) |
|
What does ``inside'' mean? |
|
|
339 | (1) |
|
Finding Winding Numbers Quickly |
|
|
340 | (1) |
|
|
341 | (3) |
|
|
341 | (1) |
|
Loops as Mappings of the Circle |
|
|
342 | (1) |
|
|
343 | (1) |
|
Polynomials and the Argument Principle |
|
|
344 | (2) |
|
A Topological Argument Principle |
|
|
346 | (7) |
|
Counting Preimages Algebraically |
|
|
346 | (1) |
|
Counting Preimages Geometrically |
|
|
347 | (2) |
|
Topological Characteristics of Analyticity |
|
|
349 | (1) |
|
A Topological Argument Principle |
|
|
350 | (2) |
|
|
352 | (1) |
|
|
353 | (2) |
|
|
353 | (1) |
|
The Fundamental Theorem of Algebra |
|
|
354 | (1) |
|
Brouwer's Fixed Point Theorem |
|
|
354 | (1) |
|
|
355 | (2) |
|
|
355 | (2) |
|
|
357 | (1) |
|
|
357 | (6) |
|
|
357 | (2) |
|
|
359 | (1) |
|
|
360 | (3) |
|
The Generalized Argument Principle |
|
|
363 | (6) |
|
|
363 | (2) |
|
Poles and Essential Singularities |
|
|
365 | (2) |
|
|
367 | (2) |
|
|
369 | (8) |
|
Complex Integration: Cauchy's Theorem |
|
|
377 | (50) |
|
|
377 | (1) |
|
|
378 | (5) |
|
|
378 | (1) |
|
|
379 | (1) |
|
Geometric Estimation of Errors |
|
|
380 | (3) |
|
|
383 | (5) |
|
|
383 | (3) |
|
|
386 | (1) |
|
|
386 | (1) |
|
|
387 | (1) |
|
|
388 | (4) |
|
|
388 | (2) |
|
|
390 | (1) |
|
|
391 | (1) |
|
|
392 | (3) |
|
|
392 | (1) |
|
|
393 | (2) |
|
|
395 | (1) |
|
|
395 | (6) |
|
Integration along a Circular Arc |
|
|
395 | (2) |
|
Complex Inversion as a Limiting Case |
|
|
397 | (1) |
|
General Contours and the Deformation Theorem |
|
|
397 | (2) |
|
A Further Extension of the Theorem |
|
|
399 | (1) |
|
|
400 | (1) |
|
|
401 | (1) |
|
|
402 | (7) |
|
|
402 | (1) |
|
|
403 | (1) |
|
|
404 | (2) |
|
The Integral as Antiderivative |
|
|
406 | (2) |
|
|
408 | (1) |
|
|
409 | (1) |
|
|
410 | (4) |
|
|
410 | (2) |
|
|
412 | (2) |
|
The General Cauchy Theorem |
|
|
414 | (4) |
|
|
414 | (1) |
|
|
415 | (2) |
|
|
417 | (1) |
|
The General Formula of Contour Integration |
|
|
418 | (2) |
|
|
420 | (7) |
|
Cauchy's Formula and Its Applications |
|
|
427 | (23) |
|
|
427 | (4) |
|
|
427 | (1) |
|
|
427 | (2) |
|
Gauss' Mean Value Theorem |
|
|
429 | (1) |
|
|
429 | (2) |
|
Infinite Differentiability and Taylor Series |
|
|
431 | (3) |
|
Infinite Differentiability |
|
|
431 | (1) |
|
|
432 | (2) |
|
|
434 | (8) |
|
Laurent Series Centred at a Pole |
|
|
434 | (1) |
|
A Formula for Calculating Residues |
|
|
435 | (1) |
|
Application to Real Integrals |
|
|
436 | (2) |
|
Calculating Residues using Taylor Series |
|
|
438 | (1) |
|
Application to Summation of Series |
|
|
439 | (3) |
|
|
442 | (4) |
|
|
442 | (1) |
|
|
442 | (4) |
|
|
446 | (4) |
|
Vector Fields: Physics and Topology |
|
|
450 | (22) |
|
|
450 | (6) |
|
Complex Functions as Vector Fields |
|
|
450 | (1) |
|
|
451 | (2) |
|
|
453 | (1) |
|
|
454 | (2) |
|
Winding Numbers and Vector Fields |
|
|
456 | (6) |
|
The Index of a Singular Point |
|
|
456 | (3) |
|
The Index According to Poincare |
|
|
459 | (1) |
|
|
460 | (2) |
|
|
462 | (6) |
|
Formulation of the Poincare-Hopf Theorem |
|
|
462 | (2) |
|
Defining the Index on a Surface |
|
|
464 | (1) |
|
An Explanation of the Poincare-Hopf Theorem |
|
|
465 | (3) |
|
|
468 | (4) |
|
Vector Fields and Complex Integration |
|
|
472 | (36) |
|
|
472 | (9) |
|
|
472 | (2) |
|
|
474 | (2) |
|
Local Flux and Local Work |
|
|
476 | (2) |
|
Divergence and Curl in Geometric Form |
|
|
478 | (1) |
|
Divergence-Free and Curl-Free Vector Fields |
|
|
479 | (2) |
|
Complex Integration in Terms of Vector Fields |
|
|
481 | (13) |
|
|
481 | (2) |
|
|
483 | (1) |
|
|
484 | (1) |
|
Example: Winding Number as Flux |
|
|
485 | (1) |
|
Local Behaviour of Vector Fields |
|
|
486 | (2) |
|
|
488 | (1) |
|
|
489 | (1) |
|
Negative Powers and Multipoles |
|
|
490 | (2) |
|
|
492 | (1) |
|
Laurent's Series as a Multipole Expansion |
|
|
493 | (1) |
|
|
494 | (11) |
|
|
494 | (1) |
|
|
494 | (3) |
|
|
497 | (1) |
|
|
498 | (2) |
|
|
500 | (3) |
|
|
503 | (2) |
|
|
505 | (3) |
|
Flows and Harmonic Functions |
|
|
508 | (65) |
|
|
508 | (5) |
|
|
508 | (3) |
|
|
511 | (2) |
|
|
513 | (4) |
|
Conformal Invariance of Harmonicity |
|
|
513 | (2) |
|
Conformal Invariance of the Laplacian |
|
|
515 | (1) |
|
The Meaning of the Laplacian |
|
|
516 | (1) |
|
A Powerful Computational Tool |
|
|
517 | (3) |
|
The Complex Curvature Revisited |
|
|
520 | (7) |
|
Some Geometry of Harmonic Equipotentials |
|
|
520 | (1) |
|
The Curvature of Harmonic Equipotentials |
|
|
520 | (3) |
|
Further Complex Curvature Calculations |
|
|
523 | (2) |
|
Further Geometry of the Complex Curvature |
|
|
525 | (2) |
|
|
527 | (13) |
|
|
527 | (1) |
|
|
527 | (5) |
|
|
532 | (6) |
|
Mapping One Flow Onto Another |
|
|
538 | (2) |
|
The Physics of Riemann's Mapping Theorem |
|
|
540 | (14) |
|
|
540 | (1) |
|
Exterior Mappings and Flows Round Obstacles |
|
|
541 | (3) |
|
Interior Mappings and Dipoles |
|
|
544 | (2) |
|
Interior Mappings, Vortices, and Sources |
|
|
546 | (3) |
|
An Example: Automorphisms of the Disc |
|
|
549 | (1) |
|
|
550 | (4) |
|
|
554 | (16) |
|
|
554 | (2) |
|
|
556 | (2) |
|
Dirichlet's Problem for the Disc |
|
|
558 | (2) |
|
The Interpretations of Neumann and Bocher |
|
|
560 | (5) |
|
|
565 | (5) |
|
|
570 | (3) |
References |
|
573 | (6) |
Index |
|
579 | |