Atjaunināt sīkdatņu piekrišanu

E-grāmata: Visual Quantum Mechanics: Selected Topics with Computer-Generated Animations of Quantum-Mechanical Phenomena

4.00/5 (12 ratings by Goodreads)
  • Formāts: PDF+DRM
  • Izdošanas datums: 08-May-2007
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9780387227702
  • Formāts - PDF+DRM
  • Cena: 83,27 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 08-May-2007
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9780387227702

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The use of visualization techniques greatly enhances the understanding of quantum mechanics as it allows us to depict phenomena that cannot be seen by any other means. "Visual Quantum Mechanics" uses the computer generated animations found on the accompanying CD-ROM to introduce, motivate, and illustrate the concepts explained in the book. For example, by watching QuickTime movies of the solutions of Schroedinger's equation, students will be able to develop a feeling for the behavior of quantum mechanical systems that cannot be gained by conventional means.While there are other books on the market that use Mathematica and Maple to teach quantum mechanics, this book differs in that the text describes the mathematical and physical ideas of quantum mechanics in the conventional manner, with no special emphasis on computational physics or the requirement that the reader know a symbolic computation package or Mathematica. In this book, instead, the computer is used to provide easy access to a large collection of animated illustrations, interactive pictures, and lots of supplementary materials. "Visual Quantum Mechanics" takes a mathematical rather than a physical approach to quantum mechanics, and includes results more typical in more advanced books but which are more comprehensible via visualization. Despite the presentations of advanced results, the book requires only calculus, and the book will fill the gap between classical quantum mechanics texts and mathematically advanced books.The book will have a home page at the author's institution (http://www.kfunigraz.ac.at/imawww/vqm/) which will include supplementary material, exercises and solutions, additional animations, and links to other sites with quantum mechanical visualization. This book along with its accompanying CD-ROM, which contains over 300 digital movies, form a complete introductory course on spinless particles in one and two dimensions. There is a second book in development which will cover such topics as spherical symmetry in three dimensions, the hydrogen atom, scattering theory and resonances, periodic potentials, particles with spin, an relativistic problems (the Dirac equation).

Using computer-generated animations found on the accompanying CD-ROM, the book is able to convey a feeling for the behavior of quantum mechanical systems which cannot be gained by conventional means. This book is unusual in that it describes the mathematical and physical ideas in the conventional manner, with no special emphasis on computational physics or the requirement that readers know a symbolic computation package or Mathematica. Despite the presentations of advanced results, the book requires only calculus, and will fill the gap between classical quantum mechanics texts and mathematically advanced books. Throughout, the computer is used to provide easy access to a large collection of animated illustrations, interactive pictures, and lots of supplementary materials.

Recenzijas

From the reviews "The new introductory textbook by Bernd Thaller, Visual Quantum Mechanics, has two distinctive features, a well-produced CD-ROM, and an emphasis on dynamics. These two features work together well and make for a remarkable publication, which mathematically oriented readers will appreciate for the care it takes with rigorous aspects of physics. (...) It is the CD-ROM which makes the book. (...) Thaller has provided 137 modules illustrating different topics (...) I would venture to say that not only the beginning student, but even the seasoned scientist may benefit, by getting a clue to a new phenomenon or theorem. (...) In sum, Visual Quantum Mechanics can be profitably used as a major supplement in an undergraduate course on quantum mechanics, and it will certainly enliven the curriculum. It could be a superb stand-alone text in a short physics course or a seminar for mathematically oriented students." Evans M. Harrell II in: SIAM Review

Preface v
Visualization of Wave Functions
1(14)
Introduction
1(1)
Visualization of Complex Numbers
2(7)
Visualization of Complex-Valued Functions
9(4)
Special Topic: Wave Functions with an Inner-Structure
13(2)
Fourier Analysis
15(34)
Fourier Series of Complex-Valued Functions
16(5)
The Hilbert Space of Square-Integrable Functions
21(4)
The Fourier Transformation
25(3)
Basic Properties of the Fourier Transform
28(1)
Linear Operators
29(5)
Further Results About the Fourier Transformation
34(4)
Gaussian Function
38(3)
Inequalities
41(4)
Special Topic: Dirac Delta Distribution
45(4)
Free Particles
49(34)
The Free Schrodinger Equation
50(5)
Wave Packets
55(4)
The Free Time Evolution
59(4)
The Physical Meaning of a Wave Function
63(7)
Continuity Equation
70(2)
Special Topic: Asymptotic Time Evolution
72(3)
Schrodinger Cat States
75(5)
Special Topic: Energy Representation
80(3)
States and Observables
83(24)
The Hilbert Space of Wave Functions
84(2)
Observables and Linear Operators
86(3)
Expectation Value of an Observable
89(2)
Other Observables
91(2)
The Commutator of x and p
93(1)
Electromagnetic Fields
94(3)
Gauge Fields
97(3)
Projection Operators
100(4)
Transition Probability
104(3)
Boundary Conditions
107(28)
Impenetrable Barrier
108(2)
Other Boundary Conditions
110(1)
Particle in a Box
111(3)
Eigenvalues and Eigenfunctions
114(5)
Special Topic: Unit Function in a Dirichlet Box
119(5)
Particle on a Circle
124(1)
The Double Slit Experiment
125(5)
Special Topic: Analysis of the Double Slit Experiment
130(5)
Linear Operators in Hilbert Spaces
135(22)
Hamiltonian and Time Evolution
135(3)
Unitary Operators
138(1)
Unitary Time Evolution and Unitary Groups
139(2)
Symmetric Operators
141(2)
The Adjoint Operator
143(1)
Self-Adjointness and Stone's Theorem
144(3)
Translation Group
147(2)
Weyl Relations
149(2)
Cononical Commutation Relations
151(1)
Commutator and Uncertainty Relation
152(1)
Symmetries and Conversation Laws
153(4)
Harmonic Oscillator
157(34)
Basic Definitions and Properties
158(5)
Eigenfunctions Expansion
163(4)
Solution of the Initial-Value Problem
167(4)
Time Evolution of Observables
171(4)
Motion of Gaussian Wave Packets
175(2)
Harmonic Oscillator in Two and More Dimensions
177(2)
Theory of the Harmonic Oscillator
179(5)
Special Topic: More About Coherent States
184(3)
Special Topic: Mehler Kernel
187(4)
Special Systems
191(36)
The Free Fall in a Constant Force Field
192(4)
Free Fall with Elastic Reflection at the Ground
196(4)
Magnetic Fields in Two Dimensions
200(2)
Constant Magnetic Field
202(3)
Energy Spectrum in a Constant Magnetic Field
205(2)
Translational Symmetry in a Magnetic Field
207(6)
Time Evolution in a Constant Magnetic Field
213(5)
Systems with Rotational Symmetry in Two Dimensions
218(4)
Spherical Harmonic Oscillator
222(2)
Angular Momentum Eigenstates in a Magnetic Field
224(3)
One-Dimensional Scattering Theory
227(30)
Asymptotic Behavior
227(4)
Example: Potential Step
231(3)
Wave Packets and Eigenfunction Expansion
234(2)
Potential Step: Asymptotic Momentum Distribution
236(3)
Scattering Matrix
239(2)
Transition Matrix
241(5)
The Tunnel Effect
246(2)
Example: Potential Well
248(3)
Parity
251(6)
Appendix A. Numerical Solution in One Dimension 257(6)
Appendix B. Movie Index 263(12)
1. Visualization
263(1)
2. Fourier Analysis
264(1)
3. Free Particles
265(1)
4. Boundary Conditions
266(2)
5. Harmonic Oscillator
268(2)
6. Special Systems
270(2)
7. Scattering Theory
272(3)
Appendix C. Other Books on Quantum Mechanics 275(4)
Index 279