Atjaunināt sīkdatņu piekrišanu

E-grāmata: Vortex Atom, The: A New Paradigm

  • Formāts: 304 pages
  • Izdošanas datums: 11-Mar-2021
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789811227608
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 78,89 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 304 pages
  • Izdošanas datums: 11-Mar-2021
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789811227608
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

With clear illustrations throughout and without recourse to quantum mechanics, the reader is invited to revisit unsolved problems lying at the foundations of theoretical physics. Maxwell and his contemporaries abandoned their search for a geometrical representation of the electric and magnetic fields. The wave-particle dilemma and Bose-Einstein statistical counting have resulted in unsatisfactory non-realistic interpretations. Furthermore, a simple structure of the hydrogen atom that includes hyperfine levels is still wanting.

Working with the latest experimental data in photoionics a proposed solution to the wave-particle dilemma is suggested based on an array of circular-polarized rays. The BoseEinstein counting procedure is recast in terms of distinguishable elements. Finally, a vortex model of a 'particle' is developed based on a trapped photon. This consists of a single ray revolving around a toroidal surface, and allows a geometrical definition of mass, electric potential, and magnetic momentum. With the adjustment of two parameters, values to 4 dp for the hyperfine frequencies (MHz) of hydrogen can be obtained for which a computer program is available.
Acknowledgments vii
This World is Not Conclusion ix
Prologue xi
Chapter 1 Introduction
1(30)
1.1 A Grave Crisis of Ideas
1(2)
1.2 Rejection of Geometrical Theories
3(5)
1.3 Evolution of Human Understanding
8(4)
1.4 A World of Changes
12(1)
1.5 Evolution of Vision
13(1)
1.6 `Particle' is a Sensory Prejudice
14(5)
1.7 A Return to Visualizable Concepts
19(3)
1.8 The Nature of the Photon
22(2)
1.9 The Mass Vortex Ring
24(7)
References
27(4)
Part 1 The Theory of Photons
31(96)
Chapter 2 The Helical Space Dislocation
33(22)
2.1 Circularly Polarized Rays
33(7)
2.1.1 Definition
33(1)
2.1.2 Evidence
34(4)
2.1.3 Early mathematical description
38(2)
2.2 Dynamical Properties of Light
40(7)
2.2.1 Linear momentum
40(2)
2.2.2 Spin angular momentum
42(2)
2.2.3 The SAM plane wave problem
44(3)
2.3 The HSD Model
47(8)
2.3.1 Spin-1
47(2)
2.3.2 Dynamical results
49(2)
2.3.3 Correspondence to Maxwell's theory
51(2)
References
53(2)
Chapter 3 A Transversely Iterated Single Photon
55(30)
3.1 Attenuated Beams
55(2)
3.2 Coincidence Counting
57(2)
3.3 Beam Splitting the Signal Photon
59(4)
3.4 Recombination of the Beam Splitter Outputs
63(5)
3.4.1 Principles of reflection and transmission
63(2)
3.4.2 Proposed photon model
65(3)
3.5 Temporal Second-Order Correlation Function
68(4)
3.6 Local or Non-local Interference?
72(8)
3.6.1 Quantum mechanical analysis
73(3)
3.6.2 Classical transverse HSD-array analysis
76(2)
3.6.3 Non-dispersion of the photon
78(2)
3.7 Concluding Remarks
80(5)
References
82(3)
Chapter 4 A Longitudinally Iterated Single Photon
85(20)
4.1 A Brief History
85(2)
4.2 The Bose Counting Method
87(5)
4.3 Cells Represented as Direction Vectors
92(3)
4.3.1 The number of cells in (v, v + dv)
92(1)
4.3.2 Tubes incident at an angle 6
93(2)
4.4 Bose Counting with Distinguishable Photons
95(7)
4.4.1 The continuous cavity path
95(3)
4.4.2 Examples of distributions
98(1)
4.4.2.1 Example 1: Three photons, four cells
98(3)
4.4.2.2 Example 2: Five photons, five cells
101(1)
4.5 Concluding Remarks
102(3)
References
103(2)
Chapter 5 The Helical Array Dislocation
105(22)
5.1 Overview
105(1)
5.2 Beam Parameters
106(5)
5.2.1 Characteristics of HG and LG modes
106(3)
5.2.2 Gouy phase shift
109(1)
5.2.3 Cylindrical mode converter
110(1)
5.3 Beam Angular Momentum
111(1)
5.4 Single-Photon OAM
112(5)
5.5 Skew-Angle Measurement
117(3)
5.6 Momentum and Velocity Components
120(7)
References
125(2)
Part 2 Mass Vortex Ring Theory
127(120)
Chapter 6 The Unloaded OAM Mass Ring
129(40)
6.1 Overview
129(3)
6.1.1 Electron vortices
129(2)
6.1.2 Definition of `spin-2'
131(1)
6.2 SAM Mass Ring
132(4)
6.2.1 HSD curvature
132(1)
6.2.2 Spin-2 rest mass
133(2)
6.2.3 Spin-2 field mass
135(1)
6.3 OAM Mass Ring
136(7)
6.3.1 Definition of'spin-3'
136(2)
6.3.2 Spin-3 field momentum
138(1)
6.3.3 Resultant field momentum
138(1)
6.3.4 Momentum and radial relations
138(1)
6.3.5 Spin-3 energy
139(3)
6.3.6 The momentum-field map
142(1)
6.4 Ring Interactions
143(12)
6.4.1 Positive and negative charge behavior
143(1)
6.4.1.1 Electrical effects
143(4)
6.4.1.2 Magnetic effects
147(2)
6.4.2 Coulomb's law
149(1)
6.4.2.1 Effect of proton field on electron ring
149(4)
6.4.2.2 Effect of electron field on proton ring
153(1)
6.4.2.3 Off-axis field effect
154(1)
6.5 Kinematics and Dynamics
155(14)
6.5.1 Law of momentum conservation
155(2)
6.5.2 The reduced mass
157(1)
6.5.3 Ring energy invariance
158(1)
6.5.4 Active and passive acceleration
159(5)
6.5.5 Ring-radiation interaction
164(1)
6.5.6 Representations of interactions
164(1)
6.5.6.1 Radiation absorption for external ring motion
164(2)
6.5.6.2 Radiation absorption for internal energy transitions
166(1)
References
167(2)
Chapter 7 The Loaded OAM Mass Ring
169(22)
7.1 Overview
169(1)
7.2 Sommerfeld-Dirac Fine Structure
170(10)
7.2.1 Mass dependence on quantum numbers
170(2)
7.2.2 Spin-2 and spin-3 speed
172(1)
7.2.3 Spin-2 and spin-3 momentum
173(1)
7.2.4 Energy of SAM ring motion in an OAM mass ring
174(1)
7.2.5 Sommerfeld-Dirac energy levels
174(3)
7.2.6 Elliptical OAM rings
177(2)
7.2.7 Spin-2 and spin-3 radius
179(1)
7.2.8 Spin-3 time period
179(1)
7.3 The OAM Ring Field
180(11)
7.3.1 Field momentum map
180(3)
7.3.2 Coulomb's law: Proton field
183(3)
7.3.3 Coulomb's law: Electron field
186(2)
7.3.4 Integral computation
188(1)
References
189(2)
Chapter 8 Hydrogen Atom Fine Structure
191(38)
8.1 Overview
191(5)
8.1.1 History
191(2)
8.1.2 The new MVR theory
193(3)
8.2 Setting up the Hydrogen Bound State
196(8)
8.2.1 The ionization energy
196(2)
8.2.2 The proton field energy
198(1)
8.2.3 Energy equivalence at boundary
198(3)
8.2.4 Doppler shift adjustment
201(3)
8.3 The Fine-Structure Calculation
204(11)
8.3.1 Preliminary
204(2)
8.3.2 Data
206(1)
8.3.3 Inputs
207(1)
8.3.4 Automatic input check
207(1)
8.3.5 Sommerfeld-Dirac fine structure
207(1)
8.3.6 Mass vortex ring fine structure
208(1)
8.3.7 Emission coordinates
209(1)
8.3.7.1 Calculation of the T coordinate
210(1)
8.3.7.2 Calculation of the Xstore coordinate
211(2)
8.3.8 The Doppler shift multiplier
213(2)
8.4 Electron States
215(6)
8.4.1 The oscillations
215(1)
8.4.1.1 Stage (a)
215(3)
8.4.1.2 Stage (b)
218(1)
8.4.1.3 Stage (c)
218(1)
8.4.1.4 Stage (d)
219(1)
8.4.2 The OAM mass rings
219(2)
8.5 Electron Configuration
221(4)
8.5.1 Quantum mechanics
221(3)
8.5.2 MVR theory
224(1)
8.6 Nuclear Configuration
225(4)
References
225(4)
Chapter 9 Hydrogen Atom Hyperfine Structure
229(18)
9.1 Preliminary
229(3)
9.2 Elements of the Calculation
232(10)
9.2.1 Parallel field assumption
232(1)
9.2.2 Proton spin-2 field momentum vector
233(1)
9.2.3 Electron spin-2 circuit
234(3)
9.2.4 Electron and proton speeds
237(1)
9.2.5 Change in electron spin-2 momentum
237(3)
9.2.6 Programming the hyperfine adjustment
240(2)
9.3 Hyperfine Results
242(5)
9.3.1 Spin-2 major axis and eccentricity
242(1)
9.3.2 The hyperfine rule
243(2)
References
245(2)
Appendix A The Unloaded OAM Ring 247(4)
Appendix B Sommerfeld Fine Structure 251(2)
Appendix C Computer Code for MVR.exe 253(14)
Appendix D Computer Program Input and Output 267(10)
Index 277(2)
About the Author 279
Dr Barry R Clarke has a variety of interests. He has academic publications in quantum mechanics and Shakespeare studies, and has published books of original mathematics and logic puzzles for Cambridge University Press and Dover Publications. The present work is a sequel to The Quantum Puzzle: Critique of Quantum Theory and Electrodynamics. His book Challenging Logic Puzzles Mensa has sold over 100,000 copies, his academic text Francis Bacon's Contribution to Shakespeare: A New Attribution Method has attracted national media attention, and he is presently puzzle compiler for The Daily Telegraph and Prospect magazine (UK). His puzzle work and his comedy sketches have been broadcast in the UK on both BBC and ITV television.