Preface |
|
v | |
1 Fundamentals of algebraic structures |
|
1 | (42) |
|
1.1 Semigroups and groups |
|
|
1 | (16) |
|
|
17 | (17) |
|
|
34 | (6) |
|
|
40 | (3) |
2 Algebraic hyperstructures |
|
43 | (26) |
|
|
43 | (3) |
|
|
46 | (8) |
|
|
54 | (7) |
|
|
61 | (8) |
3 Hv-groups |
|
69 | (46) |
|
3.1 Hv-groups and some examples |
|
|
69 | (2) |
|
3.2 Enumeration of Hv-groups |
|
|
71 | (5) |
|
3.3 Fundamental relation on Hv-groups |
|
|
76 | (5) |
|
|
81 | (5) |
|
3.5 A sequence of finite Hv-groups |
|
|
86 | (8) |
|
|
94 | (12) |
|
3.7 Hv-semigroups and noise problem |
|
|
106 | (9) |
. Hv-rings |
|
115 | (78) |
|
4.1 Hv-rings and some examples |
|
|
115 | (8) |
|
4.2 Fundamental relations on Hv-rings |
|
|
123 | (6) |
|
|
129 | (2) |
|
4.4 Multiplicative Hv-rings |
|
|
131 | (8) |
|
|
139 | (5) |
|
4.6 Hv-rings endowed with P-hyperoperations |
|
|
144 | (9) |
|
4.7 Partialdifferential-hyperoperations and Hv-rings |
|
|
153 | (6) |
|
|
159 | (4) |
|
4.9 The Hv-ring of fractions |
|
|
163 | (8) |
|
|
171 | (7) |
|
|
178 | (5) |
|
|
183 | (10) |
5 Hy-modules |
|
193 | (44) |
|
5.1 Hv-modules and fundamental relations |
|
|
193 | (3) |
|
5.2 Hv-module of fractions |
|
|
196 | (3) |
|
5.3 Direct system and direct limit of Hv-modules |
|
|
199 | (4) |
|
5.4 M[ -] and -[ M] Functors |
|
|
203 | (7) |
|
5.5 Five short lemma and snake lemma in Hv-modules |
|
|
210 | (6) |
|
5.6 Shanuel's lemma in Hv-modules |
|
|
216 | (4) |
|
5.7 Product and direct sum in Hv-modules |
|
|
220 | (5) |
|
5.8 Fuzzy and intuitionistic fuzzy Hv-submodules |
|
|
225 | (12) |
6 Hyperalgebra and Lie-Santilli theory |
|
237 | (34) |
|
|
237 | (3) |
|
|
240 | (13) |
|
6.3 The Lie-Santilli's admissibility |
|
|
253 | (9) |
|
6.4 Hv-matrix representations |
|
|
262 | (9) |
7 Outline of applications and modeling |
|
271 | (50) |
|
|
271 | (18) |
|
|
271 | (3) |
|
7.1.2 Dismutation reactions |
|
|
274 | (3) |
|
|
277 | (4) |
|
|
281 | (3) |
|
|
284 | (2) |
|
7.1.6 Galvanic/Electrolytic cells |
|
|
286 | (3) |
|
|
289 | (23) |
|
7.2.1 Inheritance examples |
|
|
289 | (10) |
|
7.2.2 Examples of different types of non-Mendelian inheritance |
|
|
299 | (4) |
|
7.2.3 Hyperstructures in second generation genotype |
|
|
303 | (1) |
|
7.2.4 The hypothetical cross of n different traits, case of simple dominance |
|
|
304 | (4) |
|
7.2.5 The hypothetical cross of n different traits, case of incomplete dominance |
|
|
308 | (2) |
|
7.2.6 The hypothetical cross of m + n different traits, case of simple and incomplete dominance combined together |
|
|
310 | (2) |
|
|
312 | (9) |
|
|
313 | (1) |
|
7.3.2 The algebraic hyperstructure of Leptons |
|
|
314 | (7) |
Bibliography |
|
321 | (8) |
Index |
|
329 | |