Atjaunināt sīkdatņu piekrišanu

E-grāmata: Waste Immobilization in Glass and Ceramic Based Hosts: Radioactive, Toxic and Hazardous Wastes

(Atomic Weapons Establishment)
  • Formāts: PDF+DRM
  • Izdošanas datums: 01-Apr-2010
  • Izdevniecība: Wiley-Blackwell
  • Valoda: eng
  • ISBN-13: 9781444319361
  • Formāts - PDF+DRM
  • Cena: 160,54 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 01-Apr-2010
  • Izdevniecība: Wiley-Blackwell
  • Valoda: eng
  • ISBN-13: 9781444319361

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

  • The safe storage in glass-based materials of both radioactive and non-radioactive hazardous wastes is covered in a single book, making it unique
  • Provides a comprehensive and timely reference source at this critical time in waste management, including an extensive and up-to-date bibliography in all areas outlined to waste conversion and related technologies, both radioactive and non-radioactive
  • Brings together all aspects of waste vitrification, draws comparisons between the different types of wastes and treatments, and outlines where lessons learnt in the radioactive waste field can be of benefit in the treatment of non-radioactive wastes

Recenzijas

"The author's renowned expertise in immobilisation technology for wastes is clearly reflected in this book, which provides an exhaustive review of the subject. It would benefit readers involved in waste management of both nuclear and nonradioactive industries." (Materials World, 1 January 2012) "I am recommending to everyone interested to read the book of Prof Donald on glass and ceramic hosts: you will find a wealth of factual data on glasses and ceramics as well as bright ideas and hints for your activities." (Materials Views, 27 April 2011)

Preface xi
Acknowledgements xiii
List of Abbreviations
xv
1 Introduction
1(36)
1.1 Categories of Waste and Waste Generation in the Modern World
1(10)
1.1.1 Radioactive Wastes from Nuclear Power and Defence Operations
2(5)
1.1.2 Toxic and Hazardous Wastes
7(2)
1.1.3 Other Sources of Waste Material
9(2)
1.2 General Disposal Options
11(8)
1.3 Radiation Issues
19(2)
1.4 Waste Disposal and the Oklo Natural Nuclear Reactors
21(4)
1.5 Nuclear Accidents and the Lessons Learnt
25(12)
References
31(6)
2 Materials Toxicity and Biological Effects
37(20)
2.1 Metals
38(13)
2.1.1 Beryllium, Barium and Radium
38(1)
2.1.2 Vanadium
39(1)
2.1.3 Chromium, Molybdenum and Tungsten
40(1)
2.1.4 Manganese, Technetium and Rhenium
40(1)
2.1.5 Platinum-Group Metals
41(1)
2.1.6 Nickel
42(1)
2.1.7 Copper, Silver and Gold
42(1)
2.1.8 Zinc, Cadmium and Mercury
43(2)
2.1.9 Aluminium and Thallium
45(1)
2.1.10 Tin and Lead
46(2)
2.1.11 Arsenic, Antimony and Bismuth
48(1)
2.1.12 Selenium, Tellurium and Polonium
49(1)
2.1.13 Thorium, Uranium, Neptunium, Plutonium and Americium
50(1)
2.2 Compounds
51(1)
2.3 Asbestos
51(6)
References
55(2)
3 Glass and Ceramic Based Systems and General Processing Methods
57(18)
3.1 Glass Formation
58(3)
3.1.1 Glass-Forming Ability
58(3)
3.1.2 Thermal Stability
61(1)
3.2 Types of Glass
61(1)
3.2.1 Silicate and Borosilicate Glasses
61(1)
3.2.2 Phosphate Glasses
61(1)
3.2.3 Rare Earth Oxide Glasses
62(1)
3.2.4 Alternative Glasses
62(1)
3.3 Ceramics
62(1)
3.4 Glass-Ceramics
63(5)
3.5 Glass and Ceramic Based Composite Systems
68(1)
3.6 Processing of Glass and Ceramic Materials
68(7)
3.6.1 Melting and Vitrification
69(1)
3.6.2 Powder Processing and Sintering
69(1)
3.6.3 Hot Pressing
69(1)
3.6.4 Sol-Gel Processing
70(1)
3.6.5 Self-Propagating High Temperature Synthesis
70(1)
3.6.6 Microwave Processing
70(1)
References
71(4)
4 Materials Characterization
75(26)
4.1 Chemical Analysis
75(1)
4.2 Thermal Analysis
76(2)
4.3 Structural Analysis
78(3)
4.3.1 Optical and Electron Microscopy
78(1)
4.3.2 Energy Dispersive Spectroscopy
79(1)
4.3.3 X-ray and Neutron Diffraction
79(1)
4.3.4 Infra-Red and Raman Spectroscopy
80(1)
4.3.5 Mossbauer Spectroscopy
80(1)
4.3.6 Nuclear Magnetic Resonance
80(1)
4.4 Mechanical Properties
81(6)
4.4.1 Fracture Mechanics
81(2)
4.4.2 Flexural Strength of Materials
83(1)
4.4.3 Lifetime Behaviour
83(4)
4.5 Chemical Durability and Standardized Tests
87(5)
4.6 Radiation Stability
92(2)
4.7 Other Properties Relevant to Wasteforms
94(1)
4.8 Use of Nonradioactive Surrogates
94(7)
References
96(5)
5 Radioactive Wastes
101(20)
5.1 Sources and Waste Stream Compositions
101(10)
5.1.1 Nuclear Reactor Spent Fuel Wastes
102(5)
5.1.2 Defence Wastes
107(1)
5.1.3 Surplus Materials
108(1)
5.1.4 Special or Unusual Categories of Radioactive Waste
109(2)
5.2 General Immobilization Options
111(10)
References
115(6)
6 Immobilization by Vitrification
121(64)
6.1 Vitrification History and the Advancement of Melter Design
121(23)
6.1.1 Pot Processes
122(2)
6.1.2 Continuous Melting by Induction Furnace
124(4)
6.1.3 Joule-Heated Ceramic Melters
128(3)
6.1.4 Cold Crucible Induction Melters
131(4)
6.1.5 Plasma Arc/Torch Melters
135(3)
6.1.6 Microwave Processing
138(1)
6.1.7 In situ Melting
138(1)
6.1.8 Bulk Vitrification
138(1)
6.1.9 Alternative Melting Techniques
138(2)
6.1.10 Vitrification Incidents and the Lessons that have been Learnt
140(4)
6.2 Difficult Waste Constituents
144(7)
6.2.1 Molybdenum and Caesium
144(3)
6.2.2 Platinum Group Metals
147(2)
6.2.3 Technetium
149(1)
6.2.4 Chromium, Nickel and Iron
150(1)
6.2.5 Halides
150(1)
6.2.6 Sulphates
150(1)
6.2.7 Phosphates
151(1)
6.3 Effect of Specific Batch Additives on Melting Performance
151(1)
6.4 Types of Glass and Candidate Glass Requirements
151(17)
6.4.1 Silicate and Borosilicate Glass
151(12)
6.4.2 Phosphate Glasses
163(2)
6.4.3 Rare Earth Oxide Glasses
165(1)
6.4.4 Alternative Glasses
166(2)
6.5 Glass-Forming Ability
168(1)
6.6 Alternative Methods for Producing Glassy Wasteforms
169(16)
6.6.1 Sintered and Porous Glass
169(2)
6.6.2 Hot-Pressed Glass
171(4)
6.6.3 Microwave Sintering
175(1)
6.6.4 Self-Sustaining Vitrification
176(1)
6.6.5 Plasma Torch Incineration and Vitrification
177(1)
References
177(8)
7 Immobilization of Radioactive Materials as a Ceramic Wasteform
185(36)
7.1 Titanate and Zirconate Ceramics
185(18)
7.2 Phosphate Ceramics
203(4)
7.3 Aluminosilicate Ceramics
207(2)
7.4 Alternative Ceramics
209(2)
7.5 Cement Based Systems
211(10)
References
212(9)
8 Immobilization of Radioactive Materials as a Glass-Ceramic Wasteform
221(20)
8.1 Barium Aluminosilicate Glass-Ceramics
222(1)
8.2 Barium Titanium Silicate Glass-Ceramics
222(1)
8.3 Calcium Magnesium Silicate Glass-Ceramics
222(5)
8.4 Calcium Titanium Silicate Glass-Ceramics
227(1)
8.5 Basaltic Glass-Ceramics
228(2)
8.6 Zirconolite Based Glass-Ceramics
230(4)
8.7 Alternative Silicate Based Glass-Ceramics
234(1)
8.8 Phosphate Based Glass-Ceramics
234(7)
References
237(4)
9 Novel Hosts for the Immobilization of Special or Unusual Categories of Radioactive Wastes
241(34)
9.1 Silicate Glasses
241(5)
9.2 Phosphate Glasses
246(3)
9.3 Alternative Vitrification Routes
249(2)
9.4 Ceramic-Based Hosts
251(2)
9.5 Glass-Encapsulated Composite and Hybrid Systems
253(6)
9.6 Oxynitride Glasses
259(1)
9.7 Plutonium Disposition
260(15)
References
266(9)
10 Properties of Radioactive Wasteforms
275(68)
10.1 Thermal Stability
275(1)
10.2 Chemical Durability
276(35)
10.2.1 General Principles of Glass Durability
277(5)
10.2.2 Durability of Silicate Based Glasses in Water
282(9)
10.2.3 Durability of Silicate Based Glasses in Groundwaters and Repository Environments
291(5)
10.2.4 Durability of Phosphate Based Glasses
296(1)
10.2.5 Lessons to be Learnt from Archaeological Glasses
297(4)
10.2.6 Ceramic Durability
301(7)
10.2.7 Glass-Ceramic Durability
308(1)
10.2.8 Durability of Glass-Encapsulated Ceramic Hybrid Wasteforms
309(1)
10.2.9 Influence of Colloids
310(1)
10.3 Radiation Stability
311(13)
10.3.1 Glass Stability
311(5)
10.3.2 Ceramic Stability
316(7)
10.3.3 Glass-Encapsulated Ceramic Hybrid Stability
323(1)
10.4 Natural Analogues
324(4)
10.5 Mechanical Properties
328(5)
10.6 Alternative Properties
333(10)
References
334(9)
11 Structural and Modelling Studies
343(18)
11.1 Structural Studies
343(7)
11.1.1 Vitreous Wasteforms
343(6)
11.1.2 Ceramic Wasteforms
349(1)
11.2 Modelling Studies
350(11)
11.2.1 Modelling Techniques
350(1)
11.2.2 Vitreous Wasteforms
350(6)
11.2.3 Ceramic Wasteforms
356(1)
References
357(4)
12 Sources and Compositions of Nonradioactive Toxic and Hazardous Wastes, Common Disposal Routes
361(28)
12.1 Incinerator Wastes
365(3)
12.2 Sewage and Dredging Sludges
368(2)
12.3 Zinc Hydrometallurgical and Red Mud Wastes
370(1)
12.4 Blast Furnace Slags and Electric Arc Furnace Dusts
370(1)
12.5 Alternative Metallurgical Wastes and Slags
370(1)
12.6 Metal Finishing and Plating Wastes
371(3)
12.7 Coal Ash and Fly Ash from Thermal Power Stations
374(5)
12.8 Cement Dust and Clay-Refining Wastes
379(1)
12.9 Tannery Industry Wastes
379(1)
12.10 Asbestos
380(1)
12.11 Medical Wastes
380(3)
12.12 Electrical and Electronic Wastes
383(1)
12.13 Alternative Wastes
384(5)
References
385(4)
13 Vitrification of Nonradioactive Toxic and Hazardous Wastes
389(40)
13.1 Incinerator Wastes
392(5)
13.2 Sewage and Dredging Sludges
397(1)
13.3 Zinc Hydrometallurgical and Red Mud Wastes
398(1)
13.4 Blast Furnace Slags and Electric Arc Furnace Dusts
399(2)
13.5 Alternative Metallurgical Wastes and Slags
401(2)
13.6 Metal Finishing and Plating Wastes
403(1)
13.7 Coal Ash and Fly Ash from Thermal Power Stations
404(2)
13.8 Cement Dust, Clay-Refining and Tannery Industry Wastes
406(1)
13.9 Asbestos
406(1)
13.10 Medical Waste
407(1)
13.11 Electrical and Electronic Wastes
408(1)
13.12 Alternative Wastes
408(1)
13.13 Mixed Nonradioactive Hazardous Wastes
409(1)
13.14 Glass-Ceramics for Nonradioactive Waste Immobilization
410(8)
13.15 Commercial Hazardous Waste Vitrification Facilities
418(11)
References
420(9)
14 Alternative Treatment Processes, and Characterization, Properties and Applications of Nonradioactive Wasteforms
429(22)
14.1 Alternatives to Vitrification
429(6)
14.2 Use of Alternative Waste Sources to Prepare New Materials
435(1)
14.3 Use of Waste Glass to Prepare New Materials
435(1)
14.4 Characterization, Properties and Applications of Nonradioactive Wasteforms
436(8)
14.4.1 Mechanical Properties
436(4)
14.4.2 Chemical Durability
440(1)
14.4.3 Structural and Modelling Studies
441(1)
14.4.4 Use of Less Hazardous or Nontoxic Surrogates
442(2)
14.5 Applications
444(7)
References
445(6)
15 Influence of Organic, Micro-Organism and Microbial Activity on Wasteform Integrity
451(14)
15.1 Micro-Organism Activity and Transport Mechanisms
452(2)
15.2 Repository Environments
454(3)
15.3 Repository Analogues
457(1)
15.4 Wasteforms
458(7)
References
462(3)
16 Concluding Remarks, Comparisons between Radioactive and Nonradioactive Waste Immobilization, and Outlook for the Future
465(28)
16.1 Mixed Radioactive and Nonradioactive Wastes
465(2)
16.2 System and Wasteform Comparisons
467(6)
16.2.1 Treatment Facilities
467(2)
16.2.2 Wasteforms
469(4)
16.3 Immediate and Short-Term Future Outlook
473(1)
16.4 Medium and Longer Term Future Outlook
474(5)
16.4.1 Generation IV Nuclear Energy Systems
474(4)
16.4.2 Element Partitioning and Transmutation
478(1)
16.5 Choosing a Wasteform
479(7)
16.5.1 Wasteforms Studied in the Past and Short-Term Future Direction
479(5)
16.5.2 Alternative Wasteforms and Longer Term Future Direction
484(2)
16.6 Wasteform Characterization
486(1)
16.7 Standards, Regulatory Requirements, and Performance Assessments
487(2)
16.8 Overall Conclusions
489(4)
References
490(3)
Index 493
Ian Donald, Atomic Weapons Establishment (AWE), UK. Ian Donald has specialised in various areas of glass technology for over 30 years. After receiving a PhD from the University of Leeds? in 1973 he continued with postdoctoral studies at the University of Warwick. This was followed by research on metallic glasses at the University of Sheffield.?Subsequently, Dr. Donald joined the Atomic Weapons Research Establishment (later to become the Atomic Weapons Establishment,?ARE) in 1981. He was promoted to the grade of Distinguished Scientist in 2002, and was awarded the John Challens Medal for Lifetime Achievement by AWE in 2006. His work at AWE?has included a diverse range of topics and has covered speculative research on a variety of glass, ceramic and glass-ceramic materials, as well as component development programmes including the research and development of chemically strengthened glasses with frangible (command-break) properties, glass-coated microwire, glass- and glass-ceramic-to-metal seal devices and coatings, glass and glass-ceramic matrix composites and, over the last 14 years, glasses and ceramics as hosts for immobilizing radioactive wastes. Over this period, Dr Donald has presented many papers at international conferences on waste-related topics.

Dr Donald is an elected member of national and international technical committees on glass including the Basic Science and Technology Committee of the Society of Glass Technology together with the Committee on Nucleation, Crystallization and Glass-Ceramics of the International Commission on Glass, representing the UK. He is also a Fellow of both the Institute of Materials, Minerals and Mining and the Society of Glass Technology, is an Associate Member of the Institute of Physics, has served time as a Visiting Professor at the University of Reading, is author or co-author of over 100 technical publications in the open literature, including a book written at the invitation of the Society of Glass Technology on Glass-to-Metal Seals, and is a member of the EPSRC Peer Review College.