Atjaunināt sīkdatņu piekrišanu

E-grāmata: Water Treatment Unit Processes: Physical and Chemical

(Colorado State University, Fort Collins, USA)
  • Formāts - PDF+DRM
  • Cena: 187,84 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Containing more than enough material for a two-semester course, this environmental engineering textbook thoroughly describes methods of particulate separation and removing microscopic particles, natural organic matter, molecules, and ions. Separate chapters explain the principles and practice of sedimentation, grit chambers, flotation, coagulation, mixing, flocculation, filtration, adsorption, ion exchange, membranes, and disinfection. Annotation ©2006 Book News, Inc., Portland, OR (booknews.com)

The unit process approach, common in the field of chemical engineering, was introduced about 1962 to the field of environmental engineering. An understanding of unit processes is the foundation for continued learning and for designing treatment systems. The time is ripe for a new textbook that delineates the role of unit process principles in environmental engineering. Suitable for a two-semester course, Water Treatment Unit Processes: Physical and Chemical provides the grounding in the underlying principles of each unit process that students need in order to link theory to practice.

Bridging the gap between scientific principles and engineering practice, the book covers approaches that are common to all unit processes as well as principles that characterize each unit process. Integrating theory into algorithms for practice, Professor Hendricks emphasizes the fundamentals, using simple explanations and avoiding models that are too complex mathematically, allowing students to assimilate principles without getting sidelined by excess calculations. Applications of unit processes principles are illustrated by example problems in each chapter. Student problems are provided at the end of each chapter; the solutions manual can be downloaded from the CRC Press Web site. Excel spreadsheets are integrated into the text as tables designated by a "CD" prefix. Certain spreadsheets illustrate the idea of "scenarios" that emphasize the idea that design solutions depend upon assumptions and the interactions between design variables. The spreadsheets can be downloaded from the CRC web site.

The book has been designed so that each unit process topic is self-contained, with sidebars and examples throughout the text. Each chapter has subheadings, so that students can scan the pages and identify important topics with little effort. Problems, references, and a glossary are found at the end of each chapter. Most chapters contain downloadable Excel spreadsheets integrated into the text and appendices with additional information. Appendices at the end of the book provide useful reference material on various topics that support the text. This design allows students at different levels to easily navigate through the book and professors to assign pertinent sections in the order they prefer. The book gives your students an understanding of the broader aspects of one of the core areas of the environmental engineering curriculum and knowledge important for the design of treatment systems.
Part I Foundation
1(118)
Water Treatment
Water Treatment
3(1)
Water Treatment Plants
3(1)
Residuals
3(1)
Organization of Water Treatment Knowledge
4(1)
Unit Processes
4(5)
Definitions
4(1)
Technologies
5(1)
Breadth of Unit Processes and Technologies
5(1)
Proprietary Technologies
5(2)
Status of Unit Processes
7(1)
Future of Treatment
7(2)
Energy Expenditure for Treatment
9(1)
Treatment Trains
9(6)
Tertiary Treatment
9(1)
Cases
9(4)
Industrial Wastewater Treatment
13(1)
Cases
13(1)
Industrial Process Water Treatment
14(1)
Hazardous Wastes
14(1)
Summary
15(9)
Acknowledgments
15(1)
References
15(1)
Bibliography
15(1)
Problems
16(1)
Glossary
17(2)
Appendix 1A Example Case Study
19(5)
Water Contaminants
Water Quality: Definitions
24(4)
Contaminants
24(1)
State of Water
24(1)
Criteria
24(1)
Standards
24(1)
Kinds of Water Quality Standards
25(2)
Normative Standards
27(1)
Standards as Targets for Treatment
27(1)
Surrogates
27(1)
Federal Laws
28(4)
Legal Definitions
31(1)
Regulations
31(1)
Priority Pollutants
31(1)
Maturation of Water Quality Knowledge
32(2)
Knowledge of Contaminants
33(1)
Measurement Technologies
33(1)
Categorizations of Contaminant Species
34(2)
Systems of Categorization
34(1)
Illustrative System of Contaminants Categorization
34(2)
Utility of Water Quality Data
36(1)
Contaminants and Water Uses
36(1)
Combinations of Quality of Source Waters and Product Waters
36(27)
Acknowledgments
39(1)
References
39(2)
Problems
41(1)
Glossary
41(2)
Appendix 2A Organic Carbon as a Contaminant
43(20)
Models
Unit Processes
63(1)
Heritage of Water Treatment
64(1)
State of the Art
65(1)
Models
65(2)
Categories of Models
65(1)
The Black Box
66(1)
Plots
67(1)
Philosophy of Modeling
67(1)
Bacon
68(1)
Descartes
68(1)
Models Categorized as Inductive or Deductive
68(2)
Lore
68(1)
Judgment
68(2)
Descriptive Models
70(1)
Extrapolation
70(1)
Physical Models
70(1)
Bench--Scale Testing
70(1)
Pilot Plants
70(1)
Demonstration Plants
71(1)
Mathematical Models
71(1)
Computer Models
71(1)
Depiction of Modeling
71(2)
Modeling Protocol
73(1)
Factorial Design
73(1)
Scenarios
74(2)
Software
76(1)
Spreadsheets
76(1)
Plotting
76(1)
Units and Dimensions
76(1)
Units
76(1)
Dimensions
76(1)
Example: Microscreen
77(1)
Pilot Plant Program
78(1)
Examples of Models
78(3)
Conclusions
81(10)
Paradigm Shift
81(1)
Mathematical Modeling
81(1)
Engineering and Science
81(1)
Engineering as a Discipline
81(1)
Engineering Methods
81(1)
The Role of the Premise
81(1)
Incomplete Knowledge
82(1)
Physical Models
82(1)
Modeling
82(1)
Mechanisms
82(1)
Full-Scale Observations
82(1)
Everyday Life
82(1)
Engineering and Modeling
82(1)
Problem-Solving Methods
82(1)
References
82(1)
Problems
83(1)
Glossary
84(2)
Appendix 3A Pilot Plant Studies
86(5)
Unit Processes Principles
Unit Processes
91(2)
Spectrum of Unit Processes and Technologies
91(2)
Matching Unit Process with Contaminant
93(1)
Traditional Treatment Trains
93(1)
Contextual Changes and New Treatment Demands
93(1)
Principles
93(4)
Sinks
93(1)
Transport
93(1)
Macro Transport: Sedimentation
94(1)
Macro Transport: Advection
94(1)
Macro Transport: Turbulent Diffusion
94(1)
Macro Transport: Porous Media Dispersion
94(1)
Molecular Transport: Diffusion
95(1)
Mathematics of Diffusion, Turbulence, and Dispersion
95(2)
Frontal Waves
97(1)
Summary
97(1)
Reactors
97(11)
Examples of Reactors
98(1)
Types of Reactors
98(1)
Mathematics of Reactors
98(1)
Materials Balance: Concept
98(1)
Comments On Materials Balance
99(1)
Materials Balance: Mathematics
99(3)
Materials Balance: Special Conditions
102(1)
Batch Reactor: Complete Mixed
102(1)
Steady State Reactor: Complete Mixed
102(1)
Zero Reaction: Complete Mixed
103(1)
Non-Steady State Reactor
104(1)
Spreadsheet Method to Solve Finite Difference Form of Mass Balance Equation
105(3)
Utility of Finite Difference Equation and Tracer Tests
108(1)
Kinetic Models
109(2)
First-Order Kinetics
109(1)
Second-Order Kinetics
109(1)
Illustrative Examples of Kinetic Equations
110(1)
Adsorption
110(1)
Gas Transfer
110(1)
Biological Degradation of Substrate
110(1)
Example: Trickling Filter
111(1)
Pond Reactor: Concentration as Function of Space, Volume, Time
111(8)
References
111(1)
Problems
111(2)
Glossary
113(6)
Part II Particulate Separations
119(156)
Screening
Theory of Screening
121(1)
Types of Screens
122(3)
Bar Screens
122(1)
Cleaning
122(1)
Manually Cleaned Bar Screens
123(1)
Screenings
123(1)
Bar Size
123(1)
Hydraulic Design
123(2)
Comminutors
125(2)
Design
126(1)
Fine Screens
127(2)
Drum Screens and Disk Screens
127(1)
Wedge-Wire Static Screens
127(1)
Mathematical Relationships
128(1)
Theory
128(1)
Design
129(1)
Microscreens
129(10)
Equipment and Installation
130(1)
Applications
130(1)
Performance
130(1)
Operation
130(1)
Sizing
130(1)
Operating Data
131(1)
Microscreen Model
132(4)
Acknowledgments
136(1)
References
136(1)
Problems
136(2)
Glossary
138(1)
Sedimentation
Key Notions in Design
139(1)
Particle Settling
139(6)
Particle Settling Principles
139(2)
Stoke's Law
141(1)
Experimental Data
141(1)
Categories of Suspensions
142(1)
Type I: Discrete Particle Suspensions
143(1)
Type II: Flocculent Suspensions
143(1)
Type III: Hindered Settling
144(1)
Type IV: Compression Settling
144(1)
Settling Basins
145(7)
Evolution
145(1)
Roman Practice
145(1)
Fill and Draw v. Continuous Flow: 1900 Practice
146(1)
Design Practice in 1939
146(1)
Hazen and Camp
147(3)
The Ideal Basin
150(1)
Camp's Conditions for the Ideal Basin
150(1)
Overflow Velocity
150(1)
Significance of Overflow Velocity
151(1)
Partial Removals for Particles with Fall Velocities, vs < vo
151(1)
Characterizing Suspensions
152(3)
Characteristics of Discrete Particle Suspensions and Removal Analysis
152(1)
Graphic Depiction of Size Fraction Removed
152(2)
Mathematics of Removal
154(1)
Problem-Solving Categories
154(1)
Upflow Basins: A Special Case
154(1)
The Role of Ideal Settling Basin Theory
154(1)
Direct Applications to Practice
154(1)
Influence on Practice
155(1)
Settling Test for Discrete Particle Suspensions
155(5)
Errors
155(1)
Test Apparatus
155(1)
Sampling Protocol
155(1)
Tabulating Results
156(1)
Interpreting Results
156(1)
Frequency Plot
157(1)
Application of Frequency Plot
157(1)
Sizing An Ideal Basin Based on Suspension Characterization
158(1)
Application of the Shield's Equation
159(1)
Dimensions of Basin
159(1)
Spreadsheet to Implement Basin Sizing Protocol
160(1)
Flocculent Suspensions (Type II)
160(5)
Settling Test for a Flocculent Suspension
160(2)
Determining Percent Removals
162(1)
Mapping Iso-Percent Removals
163(1)
Sizing a Flocculent Settling Basin
164(1)
Hindered and Compression Settling (Type III and Type IV Suspensions)
165(5)
Secondary Settling Basins for Activated Sludge
165(1)
Performance
165(1)
Sludge Thickening
166(4)
Hydraulics of Settling Basins
170(5)
Short Circuiting
170(1)
Ideal Flow
170(1)
Density Currents
170(2)
Tracer Dispersion Tests
172(1)
Results of Dispersion Tests
172(1)
Characteristics of Dispersion Curves
173(1)
Evaluation of Dispersion Curves
174(1)
Iso-Concentration Plots
174(1)
Design Practice
175(9)
Categories of Basins
175(1)
Examples of Designs
175(1)
Guidelines and Criteria for Design
176(1)
Discrete Particle Suspensions---Type I
176(3)
Flocculent Suspensions---Type II
179(1)
Flocculent Suspensions Hindered Settling---Type III
179(1)
Compression Settling---Type IV
179(1)
General Guidelines
179(1)
Shape of Basin
179(1)
Inlet Design
179(4)
Outlet Design
183(1)
Summary Notes for Practical Design
184(1)
Plate Settlers and Tube Settlers
184(17)
Origins
184(1)
Hazen's Notion of Horizontal Plate Settlers
184(1)
Camp and Tray Settlers
185(1)
Swedish Practice with Tray Settlers
185(1)
Development of Plate Settlers
185(1)
Development of Tube Settlers
186(1)
Summary
186(1)
Inclined Surface Settlers
186(1)
Analysis
186(1)
Sludge Removal
186(1)
Sizing Units
187(1)
Hydraulic Loading Rates
187(1)
Tube Settlers
188(1)
Plate Settlers
189(1)
Criteria for Hydraulic Loading Rates
190(1)
Theory
190(3)
Acknowledgments
193(1)
References
193(1)
Problems
194(3)
Glossary
197(4)
Grit Chambers
Use of Grit Chambers
201(1)
Principles of Grit Removal Ideal Basin
202(1)
Scour
202(1)
Horizontal Velocity Control
203(6)
Proportional Weir
203(1)
Parshall Flume
204(2)
Free Flow
206(1)
Flume Selection
207(1)
Submerged Flow
207(1)
Hydraulic Profile
208(1)
Construction Data
209(1)
Grit Chamber Sections
209(7)
Parabolic Section for Grit Chamber
209(1)
Mathematics of a Parabolic Section
209(2)
Rationale for Parabolic Grit Chamber Section
211(1)
Design for Parabolic Grit Chamber with Parshall Flume Control
211(1)
Trapezoidal Section
212(1)
Rectangular Section for Grit Chamber
213(1)
Parshall Flume Selection and Rectangular Section Grit Chamber
213(1)
Spreadsheet Algorithm
214(2)
Grit Chamber Practice
216(1)
Designs and Performance---Examples
216(1)
Removal Equipment
217(1)
Aerated Grit Chambers
217(7)
Principles of Aerated Grit Chamber Operation
217(1)
Separation Zone and Air Flow
217(1)
Performance Measures and Design/Operation Variables
217(3)
Practice
220(2)
Grit Quantity
222(1)
Detention Time
222(1)
Shape and Size
222(1)
Air Diffuser Placement
222(1)
Types of Air Diffusers
222(1)
Air Flow Control and Measurement
223(1)
Required Air Flow
223(1)
Equations for Experimental System
223(1)
Pressure in Header Pipe
223(1)
Blower Power
224(1)
Theory
224(10)
Calculation of Grit Removal
226(1)
Parameter Relations
226(1)
ΔL Determination
226(1)
n Determination
227(1)
Algorithm
227(2)
Acknowledgments
229(1)
References
229(1)
Problems
230(1)
Glossary
231(3)
Flotation
Development of Flotation
234(4)
First Decades
234(1)
Early Design Practice
235(1)
Water and Wastewater Applications
235(1)
Systems Variations
235(1)
System Configurations
236(1)
Methods of Generating Gas Bubbles
236(1)
Method of Dissolving Air for Dissolved Air Flotation
236(1)
Flow Configurations for Dissolved Air Flotation
236(1)
Floc-Bubble Attachment
237(1)
DAF System Description
238(1)
Principles of DAF Flotation Process
239(24)
Gas--Water Equilibrium
239(2)
Application of Henry's Law to Saturator
241(1)
Examples of Henry's Law Application
241(1)
Excess Air
242(1)
Saturator Design
243(1)
Empirical Guidelines
244(1)
Rate of Gas Transfer
244(1)
Gas Transfer Materials Balance
244(1)
Application of Principles to Saturator Design
245(2)
Saturator Cost
247(1)
Creating Gas Bubbles
247(1)
Hydraulic Grade Line
247(2)
Bubble Size
249(2)
Bubble Size Distribution
251(1)
Bubble Numbers
251(1)
Nozzle Design
251(1)
Contact Zone
252(1)
Bubbles
252(1)
Bubble-Particle Contact
252(2)
Particle-Bubble Attachment
254(1)
Guidelines for Practice
255(1)
Separation Zone
255(1)
Rise Velocity of Particle-Bubble
255(2)
Bubble-Particle Ratio
257(1)
Concentration Expressions
257(1)
Calculation of Gas Requirement
257(1)
Materials Balance for Dissolved Gas in Flotation Basin
258(1)
General Mass Balance for Flotation Basin
258(1)
Mass Balance Calculations
259(1)
Guidelines from Theory
259(1)
Particles
259(1)
Saturator Design
259(1)
Gas Precipitation
259(1)
Manifold Design
259(2)
Bubble Concentration
261(1)
Summary of a Rational Design Procedure
261(1)
Air Compressor Sizing
261(2)
Design
263(2)
Rapid Mix
263(1)
Flocculator
263(1)
Saturator
263(1)
Gas Precipitation Nozzle
263(1)
Contact Zone
263(1)
Separation Zone
263(1)
Outlet
263(1)
Float Removal
263(1)
Summary
263(1)
Flotation for Solids Thickening
263(2)
Pilot Plants
265(2)
Pilot Plant Study
265(1)
Variables
265(2)
Cases
267(1)
Birmingham
267(1)
Equipment
267(8)
Empirical Guidelines
270(1)
Air-Solids Ratio
270(1)
Acknowledgments
270(1)
References
270(1)
Problems
271(1)
Glossary
272(3)
Part III Microscopic Particles
275(490)
Coagulation
Coagulation in a Nutshell
277(4)
Defining Coagulation
277(1)
Coagulation
277(1)
Microfloc
277(1)
Flocculation
277(1)
Vernacular
277(1)
Rapid Mix
277(1)
Coagulation Reactions
277(1)
Metal Ion Reactions with Water
277(1)
Reactions
278(2)
Rate of Reaction
280(1)
Role of Polymers
280(1)
Natural Organic Matter
280(1)
Summary of Coagulation Process
280(1)
Chemistry of Coagulation
280(1)
Tools for Coagulation Control
280(1)
Empirical Approaches to Coagulation
281(1)
Summary of the Two Coagulation Mechanisms
281(1)
Particles in Ambinet Waters
281(8)
Particle Variety
282(1)
Particle Characteristics
282(2)
Clay Particles
284(1)
Color
284(1)
Turbidity and Particle Counts in Ambient and Finished Waters
284(1)
Source and Plant Effluent Variation
284(1)
Seasonal Variation
284(1)
Particle Size Distribution
285(2)
Coagulation Practice
287(1)
Dosage
287(1)
Point of Addition
288(1)
Coagulation Effectiveness
288(1)
Enhanced Coagulation
289(1)
Beginnings of Coagulation Practice
289(1)
Ground Work for Coagulation Practice
289(1)
Beginnings of Modern Water Treatment Practice
289(1)
Beginnings of Coagulation Theory
290(2)
Beginning Studies in Coagulation
290(2)
Theories of Destabilization
292(10)
Origins of Surface Charge
292(1)
Crystal Lattice as Cause of Surface Charge
292(1)
Ionization of Chemical Groups
293(1)
Preferential Adsorption of Certain Ions from Solution
293(1)
Theories of Destabilization
293(1)
Colloid Science
293(1)
Shulze-Hardy Rule
294(3)
Gouy-Chapman Model Description
297(3)
DVLO Theory
300(2)
Bonding
302(1)
Tri-Valent Metal Ions---Reactions with Water
302(19)
Aluminum and Ferric Salts
302(1)
Similarity of AI3+ and Fe3+ Salts
302(1)
Waters of Hydration
302(1)
Expressing Concentrations
302(1)
Conventions in Expressing Concentration
303(1)
Liquid Alum
304(1)
Alkalinity
304(1)
Effect of Alum on pH
304(1)
Traditional View of Alkalinity
304(1)
Modern View of the Role of Alkalinity
305(1)
Effect of Alkalinity on Demand for Alum
305(1)
Reactions Between Alum/Ferric Iron and Water
306(1)
Beginning
306(1)
Notion of Hydrolysis Reactions
306(2)
Sequential Hydrolysis Reactions
308(2)
Species Equilibrium
310(5)
Construction of Species Equilibrium Diagrams
315(1)
Coagulation Zones
315(1)
Spreadsheet Construction of Coagulation Diagrams
316(1)
Polynuclear Species
316(1)
A Comprehensive Account of Alum Speciation
316(1)
Reactions of Metal Coagulants with Colloids
317(4)
Aluminum Polymers
321(3)
Background
321(1)
Nature of PACI
322(1)
Chemistry
322(1)
Characteristics
322(1)
Functions of PACIs
322(1)
Manufactured Product
322(1)
PACI Synthesis and Species
322(1)
Preparation and Composition of PACI
322(1)
Species Equilibrium Zones of PACI
323(1)
Polymers
324(14)
Basic Notions
325(1)
Definitions
325(1)
Polymer Depiction
325(1)
Purpose of Polymer Use
325(1)
Filtration
325(1)
Sludge Conditioning
326(1)
Characteristics of Polymers
327(1)
Type
327(1)
Molecular Weight
327(1)
Charge Density
327(2)
Structure of Polymers
329(1)
Arrangement and Configuration
329(1)
Functional Groups
329(1)
Monomers
330(1)
Polymers
330(4)
Selection of Polymers
334(1)
Guidelines
334(1)
Variables
334(1)
Screening
334(1)
Synthesis of Polymers
335(1)
Manufactured Products
335(1)
Polymer Packaging
335(1)
Specification Sheets
336(1)
Prepared Batches
336(1)
Feed of Polymer
336(1)
Concentration-Convention (Adapted from AWWA B453-96)
336(2)
Zeta-Potential, Charge Density, and Streaming Current Potential
338(9)
Basic Notions of Electrophoretic Mobility
338(1)
Background
339(1)
Mathematical Relations for Electrophoresis
339(1)
Electrophoresis
340(1)
Zeta-Potential
341(2)
Measured Zeta-Potentials
343(1)
Typical Zeta-Potentials
343(1)
Variables that Affect Zeta-Potential
343(2)
Zeta-Potential as an Indicator of Effective Coagulation
345(1)
Colloid Titration
345(1)
Streaming Current Monitor
345(2)
Summary of Electrokinetic Phenomena
347(1)
Physical Models
347(3)
Jar Tests
347(1)
Bench-Scale Filters
348(1)
Pilot Plants
349(1)
Independent Variables
349(1)
Dependent Variables
350(1)
Pilot Plant Design
350(1)
Coagulation of Natural Organic Matter
350(50)
Color Removal---the Initial Quest
350(1)
Overview
351(1)
Initial Studies
351(1)
Properties of Color
352(1)
Removal of Color by Coagulation
353(1)
Removal of Color by Polymers
353(1)
Transition to Natural Organic Matter
353(1)
Mechanisms of Coagulation of NOM
353(2)
Problems of NOM
355(1)
Removal of NOM by Metal Coagulants
355(3)
Polymers as Coagulants---to Remove NOM
358(2)
Summary
360(1)
Removing NOM and Turbidity
361(1)
Combination of NOM and Particles
361(1)
Two-Stage Coagulation
362(1)
Other Organics
362(1)
Coagulation of Waste Water
362(2)
Coagulation of Synthetic Organics
364(1)
Acknowledgments
364(1)
References
364(7)
Bibliography
371(1)
Problems
371(1)
Glossary
372(19)
Appendix 9A Coulomb's Law
391(3)
Appendix 9B Coordination Chemistry
394(6)
Mixing
Definitions and Applications
400(2)
Definitions
400(1)
Mixing
400(1)
Near Synonyms
400(1)
Application Categories
400(1)
Liquid--Solid
401(1)
Liquid--Gas
401(1)
Immiscible Liquids
401(1)
Miscible Liquids
401(1)
Fluid Motion
401(1)
Pumping and Shear
401(1)
Examples
401(1)
History of Mixing
402(4)
Drinking Water Treatment
402(1)
Initial Mixing
402(1)
Gas Dissolution
403(1)
Waste Water Treatment
403(1)
Evolution of Mixing Theory
403(1)
Development of Collision Frequency Mathematics
404(1)
Derivation of G
405(1)
G and θ
406(1)
Technologies of Mixing
406(1)
Theory of Mixing
406(35)
Transport Mechanisms
407(1)
Advection
408(1)
Turbulence
408(12)
Diffusion
420(1)
Transport Regime
421(1)
Navier-Stokes Equation
421(1)
Mathematics of Navier-Stokes Equation
422(1)
Computational Fluid Dynamics
423(1)
Characteristics of Impeller Mixing
423(1)
Impellers
424(1)
Complete Mix Reactors
425(2)
Impeller Pumping
427(1)
Circulation Criterion for 99% Blending
428(2)
Similitude
430(1)
Dimensionless Numbers
430(2)
Variables of Impeller Basin Mixing
432(1)
Experimental Plots
433(2)
Types of Similitude
435(1)
Scale Up by Fluid Similitude
435(2)
Scale Up by Other Parameters
437(1)
Mixing as the Rate Limiting Process
438(1)
Injection of Coagulant Chemicals
439(1)
Disparity of Flows
439(1)
Advection of Neat Alum
439(2)
Mixing Technologies
441(25)
Impellers and Tanks
441(1)
Impellers
441(2)
Impeller Variety
443(1)
Tanks
443(1)
Rushton System
443(1)
Reactor Vessels
443(3)
Jet Mixers
446(1)
Flash Mixing by Submerged Jets
447(7)
Static Mixers
454(1)
General Principles
454(1)
Elbows
455(1)
Baffles
456(7)
Static Mixers
463(3)
Summary
466(15)
Acknowledgments
469(1)
References
469(3)
Bibliography
472(1)
Problems
472(3)
Glossary
475(6)
Flocculation
Definitions and Applications
481(1)
Definitions
481(1)
Floc
481(1)
Flocculation
482(1)
Applications
482(1)
Conventional Filtration
482(1)
Direct Filtration
482(1)
Flotation
482(1)
Activated Sludge Floc Settling
482(1)
Softening
482(1)
Tertiary Treatment
482(1)
History
482(4)
Beginning of Practice
482(1)
Langelier's Paddle Wheels at Sacramento
483(2)
Developing the Technology
485(1)
Camp's G
486(1)
Technology Variations
486(1)
Theory of Flocculation
486(16)
Kinetics
486(1)
Frequency of Particle Collisions
486(4)
Rate of Formation of New Particles, k
490(1)
Critique of G
490(1)
Cleasby's Energy Per Unit Mass
491(2)
Nature of Flocs and Flocculation
493(1)
Primary Particles
493(1)
Characteristics of Flocs
493(5)
Collision Process
498(1)
Floc Size Distribution
498(1)
Floc Breakup
499(1)
Bioflocculation
500(1)
Design Principles for Paddle Wheel Flocculators
500(1)
Derivation of Camp's Equation for Paddle Wheel Flocculation
501(1)
P(paddle wheel) with Units
502(1)
Polymer Flocculents
502(1)
Design
502(11)
Design Procedure from Camp
502(2)
Camp's Criteria
504(1)
Camp's Guidelines
504(1)
Spreadsheet Algorithm
505(1)
Illustration of Empirical Determinations from Model Flocculation Basin
505(1)
Calculations
505(2)
Plots
507(2)
Slip Factor
509(1)
Plant Design
510(1)
Other Technologies
510(1)
Turbines
510(1)
Baffles
511(2)
Proprietary Technologies
513(3)
Turbine Flocculators
513(1)
Solids Contact Units
514(1)
Design Principles
514(1)
Design Practice, Equipment, Operation
515(1)
Super-Pulsators™
515(1)
Culligan Multi-Tech
516(1)
Summary
516(13)
Acknowledgments
516(1)
References
516(3)
Problems
519(3)
Glossary
522(5)
Appendix 11A Derivation of Camp & Stein G for Three-Dimensional Cube
527(2)
Rapid Filtration
Description of Rapid Filtration
529(3)
Filtration Technology
529(1)
Rapid Filtration---In a Nutshell
529(1)
Support Components
530(1)
Pretreatment
531(1)
Applications
531(1)
Variations
531(1)
Development of Rapid Filtration
532(9)
Development of Rapid Filtration
532(1)
Hyatt Filter
532(1)
Warren Filter
533(1)
Other Proprietary Filters
533(2)
Fuller's Experiments
535(2)
Emergence of Filtration Practice
537(1)
State of the Art, 1890 and 1990
537(1)
Growth of Waterworks Industry
538(1)
State of the Art and its Evolution
538(1)
Dual Media
539(1)
Breaking the HLR Barrier
539(1)
Alternative Modes of Filtration
540(1)
Modern Filtration Practice
540(1)
The Federal Role
540(1)
Modern Practice
541(1)
Theory
541(28)
Quest of Theory
541(1)
Goals
541(1)
Limits
542(1)
Basics of Theory
542(1)
Dependent Functions in Filtration
542(1)
Suspended Solids Concentration, C(Z, t)
542(4)
Specific Solids Deposit, σ(Z, t)
546(3)
Local Hydraulic Gradient, i (Z, t)
549(1)
Rational Design
549(3)
Total Head-Loss and Components of Head-Loss
552(1)
Characteristics of C(t)z for a Filter Cycle
552(2)
Mathematical Modeling
554(1)
Iwasaki's Equations
555(1)
Filter Coefficient
556(1)
Transport Coefficient
556(4)
Attachment Coefficient
560(3)
Effect of Attachment Efficiency on Filter Ripening
563(1)
Derivation of Materials Balance Expression
564(1)
Synthesis of a Model
565(1)
Solids Uptake Rate
565(2)
Conditions at Equilibrium
567(1)
Capacity Parameters, F and σu
567(1)
Iwasaki's Equation as a Special Case for the Initial Boundary Condition's
567(1)
Zones of Wave Front
568(1)
Summary
569(1)
Design
569(21)
External Parameters
570(1)
Design Decisions
570(1)
Nontechnical Issues
570(1)
Operation
570(1)
Expansion
571(1)
Esthetics
571(1)
Regulations
571(1)
Components of Filter Design
571(1)
Layout of Filters
571(1)
Water Distribution
571(1)
Media
571(4)
Pipe Gallery
575(2)
Clear Well
577(1)
Filter Box
577(1)
Demand for Water
577(2)
Filtration Rate
579(1)
Area of Filters
579(1)
Filter Area for Single Filters
580(1)
Depth of Filter Box
580(1)
Filter Media
581(1)
Backwash
581(1)
Types of Backwash Systems
581(1)
Underdrain Systems
582(3)
Fluidization Velocities
585(1)
Surface Wash
585(1)
Air Wash
586(3)
Manifold Principles
589(1)
Air and Water Concurrent Backwash
589(1)
Backwash Water Troughs
589(1)
Control Systems
590(1)
Pilot Plants
590(13)
Chemical Factors---Operation
592(2)
Physical Factors---Design
594(1)
Equipment
594(1)
Treatment Train
594(1)
Intake
594(1)
Chemicals
594(1)
Contaminant Injection
594(1)
Filter Column
595(1)
Pilot Plant System
596(1)
Data Procurement
597(1)
Units
597(1)
Sampling
597(1)
Instrumentation
597(1)
Data Recording and Processing
598(1)
Organizing and Archiving Data
598(1)
Administrative Factors
599(1)
Cost
599(1)
Benefits of a Pilot Plant
599(1)
General Scheme of Pilot Plant Studies
599(1)
Ambient Water Quality
599(2)
Jar Testing
601(1)
Pretreatment Chemistry
601(1)
Operation
601(1)
Design---Physical Factors
601(1)
Quality Control
602(1)
Protocol for Experimental Program
602(1)
Summary
603(1)
Waste Water Filtration
603(3)
Purposes
604(1)
Beginnings
604(1)
Forms of Practice
604(1)
As a Unit Process within a Water Treatment Train
605(1)
As a Stand-Alone Process Following Biological Treatment
605(1)
Proprietary Equipment
606(4)
Ancillary Equipment
607(1)
Package Filtration Systems
607(1)
Deep Bed Filtration---Parkson Dyna Sand®
607(1)
Deep Bed Filtration---Culligan Multi-Tech®
608(1)
Shallow Bed Filtration---ABW®
608(1)
Package Filtration---EPD Wearnes USA®
609(1)
Evaluation of Products
609(1)
Pilot Plant Testing
609(1)
Coefficients
610(1)
Purchasing
610(1)
Demonstrations
610(1)
Operation
610(51)
Coagulated Water to Filter
610(1)
Filter Operating Cycle
611(1)
Filter to Waste
611(1)
Filtration
611(1)
Draining the Filter Box
611(1)
Backwash
612(1)
Surface Wash
613(1)
Air Wash v. Surface Wash
613(1)
Duration of Backwash
613(1)
Problems of Filtration
613(1)
Mud Balls and Surface Cracks
613(1)
Air Binding
614(1)
Variable Ambient Water Quality
614(1)
Ripening
614(1)
Other
614(1)
Monitoring
614(1)
Turbidity and Particle Counting
615(1)
Sampling
615(1)
Head-Loss
616(1)
Flow Measurement
616(1)
Other Measurements
616(1)
Archiving Data
616(1)
Control
616(1)
Filtration Hydraulics
617(1)
Clean Bed Head-Loss
617(1)
Progression of Head-Loss with Filter Run
617(1)
Negative Pressure
617(1)
Hydraulic Modes
618(1)
Backwash (see also 12.4.4, ``Backwash'')
618(1)
Practice
619(1)
Floc-to-Grain Bonding
619(1)
Bed Fluidization
619(4)
Cleaning
623(5)
Backwash Volume
628(2)
Acknowledgments
630(1)
References
630(5)
Problems
635(2)
Glossary
637(10)
Appendix 12A Filtration in New York
647(3)
Appendix 12B Further Notes on Bonding Forces
650(4)
Appendix 12C Further Notes on Filtration Theory
654(7)
Slow Sand Filtration
Description
661(8)
Elements of Slow Sand Technology
661(1)
Filter Box and Appurtenances
661(1)
Sand Bed
661(1)
Schmutzdecke
661(1)
Design Approach
662(1)
Attributes
662(1)
Selection Criteria
662(1)
Effectiveness
662(1)
Passive Process
663(1)
Economy
664(1)
Labor
664(1)
Materials
664(1)
Area
664(1)
Contextual Factors
664(1)
History
664(1)
James Simpson
665(1)
Evolution of Practice
665(4)
Slow Sand as a Process
669(7)
Removal Mechanisms
669(1)
The Schmutzdecke and its Role in Straining
669(1)
Depth Filtration
670(2)
Hydraulics
672(1)
Darcy's Law
673(1)
Intrinsic Hydraulic Conductivity
673(2)
Hydraulic Profile and Head-Loss
675(1)
Design
676(19)
Hydraulics
676(1)
Backfilling After Scraping
676(1)
Air Binding
676(1)
Distribution of Raw Water Inflow Kinetic Energy
677(2)
Drainage System
679(1)
Underdrain Manifold Design
679(4)
Depth of Sand
683(1)
Sand Size
684(1)
Gravel Support
685(2)
Support Systems
687(1)
Flow Measurements
687(1)
Flow Control
688(1)
Tailwater Control
688(1)
Pipe Gallery
688(1)
Access to Filters
689(1)
Plumbing Functions
689(1)
Hydraulic Profile
689(1)
Headroom
689(1)
Designing to Avoid Freezing
689(1)
Sand Recovery System
690(2)
Filter Box
692(1)
Hydraulic Loading Rate and Area
692(1)
Number of Cells
692(1)
Layout
693(1)
Depth of Box
693(1)
Structural Design
693(1)
Instruments
694(1)
Piezometers
694(1)
Flow Meters
694(1)
Turbidimeters
695(1)
Pilot Plant Studies
695(8)
Questions for a Pilot Plant Study
695(1)
Treatability
695(1)
Rate of Head-Loss Increase
695(1)
Design Criteria
696(1)
Filter Bed Maturity
696(1)
Sand Washing Effect on Filtered Water Turbidity
696(1)
Study Plan
696(1)
Pilot Plant Construction
696(1)
Media Cylinder
697(1)
Delivery of Flow
698(1)
Tailwater Control
698(1)
Piezometers
698(1)
Flow Measurement
698(1)
Data Handling and Analysis
698(1)
Data Forms
699(1)
Data Processing
700(1)
Data Interpretation
700(1)
Application of Pilot Plant Results
700(1)
Case Study
701(1)
Context
702(1)
Pilot Plant Setup
702(1)
Operation
702(1)
Results
703(1)
Discussion
703(1)
Operation
703(3)
Plant Startup
703(1)
Filling the Bed
703(1)
Filter-to-Waste
704(1)
Ripening or Maturation Period
704(1)
Operating Tasks
704(1)
Scraping
704(1)
Flow Adjustment
705(1)
Rebuilding the Sand Bed
705(1)
Ice
705(1)
Monitoring and Reporting
705(1)
Head-Loss v. Time
706(1)
Intrinsic Hydraulic Conductivity v. Time
706(1)
Issues
706(9)
Administrative
706(1)
When-to-Use
706(1)
Cost
706(1)
Financing
706(1)
Records
706(1)
Acknowledgments
707(1)
References
707(2)
Problems
709(2)
Glossary
711(4)
Cake Filtration
Description
715(13)
Cake Filtration in a Nutshell
716(1)
Definitions
716(1)
Phases of Operation
716(1)
Process Description
717(1)
Media
718(1)
Kinds of Media
718(1)
Sources of Media
718(1)
Manufacturing of Media
719(1)
Characteristics of Medium
720(1)
DE Selection
721(1)
Applications
721(1)
Variety of Applications
721(1)
Specific Applications
722(1)
Selection of Filtration Process
723(1)
Pros and Cons
723(1)
Contextual Factors
723(1)
Effectiveness
724(1)
Economy
724(1)
Labor
724(1)
Materials
724(1)
Waste Disposal
724(1)
Size
725(1)
History
725(1)
1940s Military Use of DE Filtration
725(1)
1950s Adaptation of DE for Municipal Use
726(1)
Research
727(1)
Cake Filtration Process
728(9)
Removal Effectiveness of Particles
728(1)
Turbidity and Bacteria
728(1)
Particle Counts
728(1)
Iron and Manganese
729(1)
Asbestiform Fibers
729(1)
Biological Particles
729(1)
Removal Mechanisms
730(1)
Straining
730(1)
Adsorption
731(1)
Role of DE Grade
731(1)
Variations
732(1)
Pre-Coat Grade A and Body Feed Grade B
732(1)
Chemical Addition
732(1)
Hydraulics
732(1)
Hydraulics of Cake Filtration
733(4)
Design
737(9)
Diatomite Technologies
737(1)
Equipment/Septum Housing
738(1)
Septum
739(1)
Design Examples
739(1)
Data from Twelve Plants
739(1)
Summary of Design Data
739(1)
Plant Descriptions
739(1)
Design Variables
740(1)
Variables
740(1)
Optima
740(1)
Guidelines and Criteria
740(3)
Components of a System
743(1)
Filter Housing
743(1)
Tanks for Pre-Coat and DE Body Feed
743(1)
Pipes
743(1)
Pumps
743(1)
Appurtenances
744(1)
Layout
745(1)
Storage and Disposal of Waste DE
746(1)
Operation
746(2)
Operating Protocol
746(1)
Pre-Coat Deposit
746(1)
Body Feed
746(1)
Valve and Pump Operation
747(1)
Monitoring
747(1)
Flow v. Time
747(1)
Headloss v. Time
747(1)
Turbidity v. Time
748(1)
Criteria for Run Termination
748(1)
Cleaning and Startup
748(1)
Protocol
748(1)
Start Up
748(1)
Disposal of Waste Diatomite
748(1)
Waste Storage
748(1)
Waste Disposal
748(1)
Pilot Plant Studies
748(3)
Questions for a Pilot Plant Study
748(1)
Selection of Grade of DE
748(1)
Treatability
749(1)
Rate of Head-Loss Increase
749(1)
Functional Relationships
749(1)
Design Criteria
749(1)
Study Plan
749(1)
Pilot Plant Equipment
750(1)
Data Handling and Analysis
750(1)
Data Forms
750(1)
Data Processing
750(1)
Data Interpretation
751(1)
Case Studies
751(14)
Vacaville Pilot Plant Study
751(3)
100 Mile House, B. C.
754(1)
SR Ranch, Colorado
754(1)
Acknowledgments
755(1)
References
755(3)
Problems
758(1)
Glossary
758(4)
Appendix 14A Diatomite Producers
762(1)
Appendix 14B Filtration Equipment
763(1)
Appendix 14C Chronology (Excerpts from Cummins, 1975, No. 19, pp. 1--15)
764(1)
Part IV Molecules and Ions
765(320)
Adsorption
Description
767(16)
Adsorption in a Nutshell
767(1)
Definitions
767(2)
Process Description
769(1)
Operation
769(1)
Performance Measures
770(1)
Adsorbents
771(1)
Kinds of Adsorbents
771(1)
Sources of Activated Carbon
772(1)
Manufacturing of Activated Carbon
772(1)
Characteristics of GAC
773(5)
Shipping Data
778(1)
Adsorbates
778(1)
Organic Compounds
778(1)
Natural Organic Matter
779(1)
Particles
779(1)
Metal Ions
779(1)
Applications
779(1)
Waste Water
779(1)
Drinking Water
780(1)
Industrial Water
780(1)
Pump and Treat Groundwater Contamination
781(1)
Replacement of Filter Media
781(1)
History
781(1)
Lore
782(1)
Science
782(1)
Adaptation for Municipal Use
782(1)
Research
782(1)
Adsorption Process Theory
783(30)
Equilibrium
783(1)
Reaction
783(2)
Langmuir Isotherm
785(5)
Freundlich Isotherm
790(1)
General Isotherm
791(1)
Multi-Component Equilibria
792(1)
Kinetics
793(1)
Advection
793(1)
Diffusion
793(1)
Fick's First Law
793(2)
Empirical Forms of Rate Equations
795(1)
Reactor Theory for Packed Beds
796(1)
Mathematics
796(1)
Advection Kinetics
797(3)
Simulation Modeling
800(2)
Characteristics of Output Curves
802(3)
Terms in Mass Balance Equation
805(1)
Interpretation of Model Terms
806(1)
Rational Design
807(1)
Limitation of Mathematical Solution to Materials Balance Equation
807(1)
Quick and Dirty Mass Balance
807(2)
Empirical Data for Lwf and vwf
809(1)
Theoretical Results for Lwf and Vwf
809(1)
Problems
810(1)
Competition between Adsorbents
810(1)
Chromatographic Effect
810(2)
Bacterial Colonization
812(1)
Laboratory and Pilot Plant Studies
813(8)
Questions for a Laboratory/Pilot Plant Study
813(1)
Isotherm Determination
813(1)
Determine v(Wave Front)
813(1)
L(Wave Front)
813(1)
Breakthrough Curve
813(1)
Rate of Head-Loss Increase
813(1)
Backwash Velocity
814(1)
Assess Competitive Effects of Different Adsorbents
814(1)
Discover Effects of Unanticipated Problems
814(1)
Study Plan
814(1)
Pilot Plant Construction
814(1)
Fabrication
814(1)
Layout
814(1)
Data Handling and Analysis
814(1)
Demonstration Scale Plants
815(1)
Pomona
815(1)
Orange County Water District Tertiary Plant
815(3)
Colorado Springs Tertiary Plant
818(1)
Denver Reuse Plant
819(2)
Design
821(17)
Design Variables
821(1)
Dependent Process Variables
821(1)
Independent Process Variables
821(3)
Guidelines and Criteria
824(1)
Design Protocol
824(1)
Spreadsheet Layout
824(3)
Spreadsheet Scenarios
827(1)
Hydraulics of GAC Packed Bed
827(2)
Elements of a System
829(1)
Reactors
829(1)
Tanks
829(1)
Appurtenances
829(1)
Layout
829(1)
Backwash
829(1)
Disposal of Backwash Water
829(1)
Slurry Transport of GAC
829(1)
Design Examples
830(1)
Examples of Sites
830(1)
Taste and Odor Control at Buckingham, England
830(1)
Taste and Odor Control at Goleta Water District, California
830(1)
Micropollutants---River Elbe
831(1)
Chemical Residuals at Nitro Plant, West Virginia Water Company
831(1)
Love Canal
831(1)
South Tahoe Tertiary Plant
832(1)
Cincinnati Municipal Plant
833(1)
Pump and Treat WTP Rocky Mountain Arsenal, Colorado
834(1)
Klein Water Treatment Facility Commerce City, Colorado
834(3)
Summary Data for Tertiary Treatment Plants, c. 1973
837(1)
Operation
838(2)
Treatment Train
838(1)
Stand Alone GAC
838(1)
Drinking Water
838(1)
Tertiary Treatment
838(1)
Ozone Pretreatment
838(1)
Problem Areas
838(1)
Microbial Growths
838(1)
Corrosion
838(1)
Operating Protocol
838(1)
Removal from Service
839(1)
Protocol
839(1)
Monitoring
839(1)
Flow v. Time
839(1)
Influent Concentration
839(1)
Breakthrough Curve
839(1)
Wave Front
839(1)
Head-Loss v. Time
840(1)
Tank Lining Inspection
840(1)
Criteria for Reactor Run Termination
840(1)
Media Handling
840(1)
Disposal of Waste
840(1)
Backwash Water
840(1)
Spent GAC
840(1)
Cost
840(1)
Regeneration
841(24)
Regeneration Process
841(1)
Multiple Hearth Furnace
842(1)
Effects of Regeneration
842(1)
Cost of Regeneration
843(1)
Acknowledgments
843(1)
References
843(4)
Problems
847(2)
Glossary
849(8)
Appendix 15A Freundlich Isotherm Coefficients
857(3)
Appendix 15B Mathematics of Particle Adsorption Kinetics
860(5)
Ion Exchange
Description
865(16)
Ion Exchange in a Nutshell
865(1)
Definitions
865(1)
Comparison with Adsorption
865(1)
Phases of Operation
865(1)
Process Description
866(1)
Media
866(1)
Mechanism of Exchange
866(1)
Mineral Ion Exchangers
866(1)
Zeolites
866(3)
Clays
869(1)
Synthetic Resins
870(3)
Activated Alumina
873(2)
Characteristics of Media
875(1)
Ion Affinity
875(1)
Capacity
875(1)
Calculation
875(1)
Applications
876(1)
Softening
876(2)
Specific Ion Removal
878(1)
Demineralization
879(1)
History
880(1)
Science
880(1)
Adaptation for Municipal Use
881(1)
Ion Exchange Theory
881(8)
Equilibrium
881(1)
General Reaction and Equilibrium Equations
881(1)
Simplified Equilibrium Equations
882(1)
Isotherm Expression of Equilibrium
882(1)
Thermodynamics
883(1)
Expressions of Equilibrium
883(1)
Selectivity of Counter-Ions
883(1)
Valence of Counter-Ions
883(1)
Ionic Solvation and Swelling Pressure
883(1)
Sieve Action
884(1)
Ion Pair Formation
884(1)
Electrostatic Attraction
884(1)
London Interactions
884(1)
Solution Effects
884(1)
Isotherm Determination
884(1)
Properties of Ion Exchangers
884(1)
Expressions of Capacity
884(1)
Laboratory Determination of Capacity
884(1)
Density
885(1)
Categories of Ion Exchangers
885(1)
Strong-Acid and Strong-Base Ion Exchangers
885(1)
Weak-Acid and Weak-Base Ion Exchangers
885(2)
pH Titration
887(1)
pK Determination
887(1)
Kinetics
888(1)
Rate Determining Step
888(1)
Fick's First Law
888(1)
Design
889(4)
Selection of Ion Exchangers
889(1)
Resins
889(1)
Zeolites
890(1)
System Design
890(1)
Pretreatment
891(1)
Reactor Cycle
891(1)
Regeneration
891(1)
Disposal
892(1)
Salt Handling
892(1)
Acid Regenerate
892(1)
Base Regenerate
892(1)
Reactor Design
892(1)
Summary of Design Data
892(1)
Operation
893(2)
Operating Cycle
894(1)
Production
894(1)
Regeneration
894(1)
Disposal
894(1)
Monitoring
895(1)
Head-Loss
895(1)
Dissolved Target Compounds
895(1)
Criteria for Run Termination
895(1)
Disposal of Waste Brine
895(1)
Pilot Plant Studies
895(1)
Case Studies
896(15)
Nitrate Removal at Glendale, Arizona
896(1)
Acknowledgments
897(1)
References
897(1)
Bibliography
898(1)
Problems
899(1)
Glossary
900(5)
Appendix 16A Properties of Ion Exchanger Materials
905(1)
Appendix 16B Ion Exchange Conversions
906(5)
Membrane Processes
Description
911(12)
Membranes in a Nutshell
911(1)
Definitions
912(1)
Analysis-Flow Balance Principle
913(1)
Process Description
913(1)
Membrane Technology
913(1)
Racks
913(1)
Treatment Train
914(1)
Operation
914(1)
Global Capacity
915(1)
Membrane Types
915(1)
Membrane Materials
916(1)
Membrane Structure
916(1)
Microporous Membranes
916(1)
Asymmetric Membranes
917(1)
Manufacturing
918(1)
Flat Sheets
918(1)
Tubes
918(1)
Packaging
918(1)
Plate-and-Frame Modules
918(1)
Spiral-Wound Membrane Modules
918(2)
Hollow-Fiber Modules
920(1)
Flow within Membrane Element
920(1)
Ratings
921(1)
Variations from Manufacturers
921(1)
Applications
922(1)
Particle Removals
922(1)
Removal of Organics
922(1)
Removal of Cations and Anions
922(1)
Pros and Cons
922(1)
Advantages
923(1)
Disadvantages
923(1)
History
923(2)
Membranes in Science
923(1)
Beginnings
923(1)
Experimental Period
923(1)
The Development Period
924(1)
Modern Period
925(1)
Types of Membrane Filters from 1963 through the 1970s
925(1)
Membranes in Water Treatment Practice
925(1)
Theory
925(12)
Performance Variables
925(1)
Solute/Particle Rejection
925(1)
Models Describing Water and Solute Flux through Membranes
926(1)
Basic Notions for a Cross-Flow Membrane Element
927(1)
Flow Balance
927(1)
Mass Balance and Pressures
927(1)
Water Flux Density
927(1)
Solute Mass Flux
928(1)
Transmembrane Pressure
928(1)
Poiseuille Law
928(1)
Osmosis
929(1)
Osmotic Pressure
929(1)
Reverse Osmosis
930(1)
Effect of Membrane Pressure on Water Flux Density
931(1)
Electrodialysis
931(1)
Theory
932(1)
Technology
933(1)
Applications
933(1)
Physical and Chemical Factors Affecting Membrane Properties
934(1)
Fouling
934(1)
Reversible and Irreversible Fouling
934(1)
Natural Organic Matter
935(1)
Particle Fouling
935(1)
Inorganics
935(1)
Concentration Polarization
935(2)
Design
937(2)
Pretreatment
937(1)
Cartridge Filters
937(1)
Microfilter
937(1)
Conventional Treatment
937(1)
Other Pretreatment
937(1)
Membrane Layouts
937(1)
First Stage
938(1)
Second Stage
938(1)
Third Stage
938(1)
Concentrate
938(1)
Recoveries
938(1)
Operation
939(1)
Integrity Testing
939(1)
Breaches
939(1)
Testing
939(1)
Cleaning
939(1)
Pilot Studies
940(1)
Pilot Plant Questions
940(1)
Fouling
940(1)
Cleaning
940(1)
Pretreatment
940(1)
Pressure and Flux Density
940(1)
Removals
940(1)
Concentrate Characterization and Disposal
940(1)
Membrane Integrity
940(1)
Pilot Plant Design
940(1)
Layout
941(1)
Software and Sensors
941(1)
Pilot Plant Operation
941(1)
Cases
941(14)
City of Brighton Reverse Osmosis Water Treatment Plant
941(1)
Background
941(1)
Brighton Pilot Plant
942(1)
Design Parameters
942(2)
Plant Layout
944(1)
Acknowledgments
945(1)
References
945(1)
Problems
946(1)
Glossary
947(8)
Gas Transfer
Description
955(2)
Gas Transfer in a Nutshell
955(1)
Comparison with Other Mass Transfer Processes
955(1)
Process Description
955(1)
Applications
955(1)
History
956(1)
Gas Transfer Theory
957(22)
Equilibria
957(1)
Henry's Law
957(1)
Kinetics
957(1)
Diffusion
958(3)
Adaptation of Fick's Law to Two Film Theory
961(5)
Surface Renewal Models
966(1)
KLa as a Design Parameter
967(1)
Derivation of Working Equation
967(4)
Reactor Modeling
971(1)
Continuous-Flow Complete Mix Reactor Modeling for Gas Transfer
971(1)
Batch Reactor Aeration Modeling
972(3)
Column Reactor Modeling
975(1)
Column Reactor Modeling---Packed Beds
976(3)
HTU/NTU Alternative
979(1)
Effect of Gas on KLa and Uptake/Stripping Effects
979(1)
Design
979(10)
Aerator Design
980(1)
Algorithm for Aerator Sizing
980(2)
Equipment
982(1)
Reactor Types
982(1)
Turbine Aerators
982(3)
Diffused Aeration
985(2)
Operation
987(2)
Air Stripping
989(1)
Case Studies
989(8)
Fine Bubble Diffusers
989(1)
Air Stripping
989(1)
Sydney Mine at Valrico, Florida
989(1)
Well 12A---City of Tacoma, Washington
989(1)
Wurtsmith AFB---Oscoda, Michigan
990(1)
Hyde Park Superfund Site, New York
990(1)
Acknowledgments
991(1)
References
991(1)
Bibliography
992(1)
Problems
992(3)
Glossary
995(2)
Disinfection
Fundamentals
997(3)
Microorganisms and Diseases
997(2)
Selection of a Disinfectant
999(1)
Disinfectant Models
999(1)
Disinfectants
999(1)
Factors Affecting Disinfection
999(1)
History
1000(7)
Disinfection
1000(1)
Chlorine
1000(2)
Production of Chlorine Gas
1002(1)
Ozone
1003(1)
Chlorine Dioxide
1004(1)
Ultraviolet Radiation
1005(1)
Other Disinfectants
1005(1)
Iodine
1006(1)
Bromine
1006(1)
Hydrogen Peroxide
1006(1)
Silver
1006(1)
Potassium Permanganate
1006(1)
Theory
1007(18)
Mechanism of Inactivation
1007(1)
Factors Affecting Inactivation
1007(1)
Mathematics of Inactivation
1007(1)
Ct Data
1008(1)
Inactivation by Ozone
1008(1)
Application of Theory
1008(3)
Examples of Ct Relation
1011(1)
Chlorine Disinfection
1011(1)
Chlorine Properties
1012(1)
Chlorine Disinfection of Different Microorganism Species
1012(1)
Chlorine Demand
1013(3)
Chloramines
1016(1)
Chlorine-Ammonia Reactions
1016(1)
Chloramine Disinfection
1016(1)
Ozone Chemistry
1016(1)
Cts for Ozone
1017(1)
Chlorine Dioxide
1018(1)
Ultraviolet Radiation
1018(1)
Disinfection Rate by UV
1018(1)
Log Rs by UV
1018(2)
History of Cryptosporidium Inactivation by UV
1020(1)
Radiation Fundamentals
1020(4)
Comments on Reactor Design
1024(1)
Design
1025(7)
Chlorine
1025(1)
Chlorine Feed
1025(2)
Reactor Design
1027(1)
Hypochlorite Design
1027(1)
Ozone Design
1027(2)
Chlorine Dioxide
1029(1)
UV Reactors
1029(1)
Sizing
1029(1)
UV Reactors
1029(1)
UV Lamps
1029(1)
UV Lamp Orientation in Reactor
1030(1)
Lamp Components
1030(1)
UV Design Guidelines
1031(1)
Cost Comparisons
1031(1)
Summary
1032(1)
Operation
1032(11)
Chlorine Operation
1032(1)
Ozone Operation
1032(1)
Ultraviolet Lamps
1032(1)
Aging
1032(1)
Fouling
1033(1)
Maintenance
1033(1)
Acknowledgments
1033(1)
References
1033(2)
Problems
1035(1)
Glossary
1036(7)
Oxidation
Description
1043(2)
Applications of Oxidation Technology
1043(1)
History of Oxidation Technology
1043(1)
Oxidation Based on Electromotive Potential
1043(1)
Wet Air Oxidation
1044(1)
Supercritical Water Oxidation
1044(1)
Oxidation Theory
1045(12)
Fundamentals
1045(1)
Definitions
1045(1)
Enumeration of Reaction
1045(1)
Half Reactions
1046(1)
Oxidation Numbers
1047(1)
Thermodynamic Relations
1047(1)
Oxidants
1047(1)
Chlorine
1047(1)
Ozone
1047(3)
Hydroxyl Radical
1050(1)
Permanganate
1050(1)
Chlorine Dioxide
1050(1)
Titanium Dioxide
1051(1)
Supercritical Water Oxidation (SCWO)
1052(1)
Critical Point
1052(1)
SCWO in a Nutshell
1052(1)
Characteristics of Supercritical Water Relevant to Engineering
1053(1)
Supercritical Reactors
1053(1)
Research in the 1990s
1054(1)
Design Factors
1054(2)
Case Study---SCWO of Pulp and Paper Mill Sludge
1056(1)
Practice
1057(10)
Acknowledgments
1057(1)
References
1057(2)
Problems
1059(1)
Glossary
1060(3)
Appendix 20A Derivation of the Nernst Equation
1063(2)
Appendix 20B Oxidation Number
1065(2)
Precipitation
Description
1067(2)
Precipitation in a Nutshell
1067(1)
Definitions
1067(1)
Comparison with Other Processes
1067(1)
Process Description
1067(1)
Applications
1067(1)
Softening
1067(1)
Toxic Metals Removal
1068(1)
History
1068(1)
Softening
1068(1)
Sewage Treatment
1069(1)
Heavy Metals
1069(1)
Precipitation Theory
1069(7)
Equilibria
1069(1)
Solubility Law
1069(2)
Application of Solubility Law
1071(1)
Listing of Solubility Products
1071(1)
Solubility pH-pC Diagrams
1071(1)
pε-pH Diagrams
1072(1)
General Rules of Solubility
1072(1)
Hardness
1072(2)
Occurrence of Hardness
1074(1)
Expressing of Hardness as CaCO3
1074(1)
Other Definitions of Hardness
1075(1)
Softening Reactions
1075(1)
Lime Soda Process
1076(1)
Chemistry of Metals
1076(1)
Practice
1076(9)
Lime Softening
1077(1)
Precipitation of Heavy Metals
1077(1)
Common Chemical Reactions
1077(1)
Case---Mine Drainage
1078(1)
Precipitation of Anions
1078(1)
Phosphate Precipitation
1079(1)
Cyanide Precipitation
1079(1)
Acknowledgments
1079(1)
References
1079(1)
Problems
1080(1)
Glossary
1081(4)
Appendices
1085(142)
Quick Reference
1087(8)
Appendix A International System of Units
1095(18)
Appendix B Physical Constants and Physical Data
1113(8)
Appendix C Miscellaneous Relations
1121(8)
Appendix D Fluid Mechanics---Reviews of Selected Topics
1129(32)
Appendix E Porous Media Hydraulics
1161(14)
Appendix F Alum Data and Conversions
1175(18)
Appendix G Dimensionless Groups
1193(10)
Appendix H Dissolved Gases
1203(24)
Index 1227
David W. Hendricks