Atjaunināt sīkdatņu piekrišanu

Wave Propagation in Solid and Porous Half-Space Media 2014 ed. [Hardback]

  • Formāts: Hardback, 304 pages, height x width: 235x155 mm, weight: 6812 g, 87 Illustrations, color; 42 Illustrations, black and white; XXV, 304 p. 129 illus., 87 illus. in color., 1 Hardback
  • Izdošanas datums: 26-Apr-2014
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 1461492688
  • ISBN-13: 9781461492689
  • Hardback
  • Cena: 136,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 160,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 304 pages, height x width: 235x155 mm, weight: 6812 g, 87 Illustrations, color; 42 Illustrations, black and white; XXV, 304 p. 129 illus., 87 illus. in color., 1 Hardback
  • Izdošanas datums: 26-Apr-2014
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 1461492688
  • ISBN-13: 9781461492689
This book covers advanced topics in dynamic modeling of soil-foundation interaction, as well as the response of elastic semi-infinite media from an applications viewpoint.

This book covers advanced topics in dynamic modeling of soil-foundation interaction, as well as the response of elastic semi-infinite media from an applications viewpoint. Advanced concepts such as solutions for analysis of elastic semi-infinite mediums, fluid motion in porous media, and nonlinearities in dynamic behavior are explained in great detail. Related theories and numerical analysis for vertical vibration, and rocking vibration of a rigid rectangular mass-less plate, and horizontal vibration of a rigid mass-less plate are presented. Throughout the book, a strong emphasis is placed on applications, and a laboratory model for elastic half-space medium is provided.
1 Introduction
1(14)
1.1 Surface Response Due to Concentrated Forces
2(2)
1.2 Dynamic Response of Foundations
4(5)
1.2.1 Assumed Contact Stress Distributions
4(1)
1.2.2 Mixed Boundary Value Problems
5(2)
1.2.3 Lumped Parameter Models
7(1)
1.2.4 Computational Methods
8(1)
1.3 Coupled Vibrations of Foundations
9(2)
1.4 Interactions Between Foundations
11(1)
1.5 Experimental Studies
12(1)
1.6 Layered Elastic Medium
13(2)
2 Governing Equations
15(14)
2.1 Derivation of Equations of Motion
16(1)
2.2 Stress-Strain Relation
16(1)
2.3 Strains in Terms of Displacements
17(2)
2.4 Elastic Rotations in Terms of Displacements
19(1)
2.5 Equations of Motion
19(2)
2.6 Displacements in Terms of Dilatation and Rotation Components
21(1)
2.7 Stresses in Terms of Dilatation and Rotation Components
22(2)
2.8 Fourier Transformation of Equations of Motion, Boundary Stresses, and Displacements
24(1)
2.9 General Solution of Transformed Equations of Motion
25(4)
3 Surface Response of an Elastic Half-Space Due to a Vertical Harmonic Point Force
29(26)
3.1 Boundary Conditions of the Problem
30(1)
3.2 Integral Representations of Displacements
31(3)
3.3 Real Root of Rayleigh's Function
34(1)
3.4 System of Free Waves
35(1)
3.5 Evaluation of Displacements
36(4)
3.6 Numerical Integration for Displacements
40(1)
3.7 Evaluation of A1
40(1)
3.8 Evaluation of A2
41(1)
3.9 Evaluation of A3
41(1)
3.10 Results and Discussion
42(13)
4 Response of the Surface of an Elastic Half-Space Due to a Horizontal Harmonic Point Force
55(30)
4.1 Boundary Conditions for the Problem
56(1)
4.2 Integral Representations of Displacements
57(3)
4.3 Rayleigh Wave Displacements
60(1)
4.4 Evaluation of Displacements
60(9)
4.5 Numerical Integration of Displacements
69(1)
4.6 Results and Discussion
70(15)
5 Dynamics of a Rigid Foundation on the Surface of an Elastic Half-Space
85(36)
5.1 Introduction
86(3)
5.2 Method of Analysis for a Massless Base
89(7)
5.2.1 Comparison
93(3)
5.3 Dynamic Response of a Massive Foundation
96(6)
5.4 Experimental Verification
102(1)
5.5 Discussion and Conclusion
102(2)
5.6 Simultaneous Horizontal and Rocking Vibration of Rectangular Footing
104(6)
5.6.1 Equation of Motion
105(2)
5.6.2 Results and Discussions
107(3)
5.7 Response of Two Massive Bases on an Elastic Half-Space Medium
110(11)
5.7.1 Introduction
110(1)
5.7.2 Displacement of a Massless Passive Footing Due to Oscillations of an Active Massless Footing
111(4)
5.7.3 Interactions Between Two Massive Bases
115(3)
5.7.4 Results and Discussion
118(3)
6 Experiments on Elastic Half-Space Medium
121(22)
6.1 Introduction
121(2)
6.2 Determination of Shear Modulus for the Medium
123(3)
6.3 Determination of Dynamic Properties of the Medium
126(1)
6.4 Laboratory Half-Space Medium
127(7)
6.4.1 Apparatus
128(1)
6.4.2 Static Properties of the Medium
129(2)
6.4.3 Dynamic Properties of the Medium
131(3)
6.5 Experimental Vibration Response of Massive Rectangular and Circular Bases
134(2)
6.6 Experimental Response of Coupled Horizontal and Rocking Vibration
136(2)
6.7 Measurement of Dynamic Properties of Elastic Half-Space Medium Using Square Footings
138(5)
6.7.1 Mathematical Model
138(1)
6.7.2 Experimental Results
139(4)
7 Dynamic Response of a Rigid Foundation Subjected to a Distance Blast
143(10)
7.1 Introduction
144(1)
7.2 Surface Response Due to Concentrated Forces
144(2)
7.3 Governing Equation of Motion
146(3)
7.4 Results and Discussions
149(2)
7.5 Conclusion
151(2)
8 Identification of Vertical Exciting Force on the Surface of an Elastic Half-Space Using Sensor Fusion
153(6)
8.1 Introduction
154(1)
8.2 Numerical Techniques
155(1)
8.3 Determination of the Source Location
155(3)
8.4 Conclusions
158(1)
9 Surface Vibration of a Multilayered Elastic Medium Due to Harmonic Concentrated Force
159(28)
9.1 Introduction
160(1)
9.2 Equation of Motion
161(20)
9.2.1 Displacement Equations
164(1)
9.2.2 Stress Equations
165(1)
9.2.3 Shear Stress Equations
166(1)
9.2.4 Solutions of the Governing Equations
167(9)
9.2.5 General Solutions of Transformed Equations of Motion
176(3)
9.2.6 Harmonic Response of the Surface Due to a Concentrated Vertical Load
179(2)
9.3 Results and Discussions
181(4)
9.3.1 Vertical and Horizontal Surface Load on the One-Layered Mediums
181(2)
9.3.2 Vertical and Horizontal Surface Load on the Two-Layered Mediums
183(2)
9.4 Conclusion
185(2)
10 Three-Dimensional Wave Propagations in Porous Half-Space Subjected to Multiple Energy Excitations
187(80)
10.1 Introduction
189(5)
10.2 Porous Materials and Porous Media in Petroleum Industry
194(9)
10.2.1 Porous Materials
194(7)
10.2.2 Porous Media and Enhanced Oil Recovery in Petroleum Industry
201(2)
10.3 Development of General Governing Equations in Relative Displacements for Wave Propagations in Porous Media
203(8)
10.3.1 Biot's Theory
204(7)
10.4 Fractal Dimension Development of 3D Wave Model for Wave Propagations in Half-Space Porous Media
211(19)
10.4.1 Governing Equation Development
213(3)
10.4.2 Establishment of Wave Propagation Model with Multiple Energy Sources
216(4)
10.4.3 Numerical Study
220(10)
10.5 Wave Field in Porous Half-Space Media Saturated with Newtonian Viscous Fluid
230(19)
10.5.1 Development of Governing Wave Equations
230(3)
10.5.2 Wave Propagation and Displacement Field Model with Viscosity
233(3)
10.5.3 Effects of Viscosity on Wave Dispersion in Porous Half-Space Under Multiple Energy Sources
236(13)
10.6 Wave Field of a Porous Half-Space Medium Saturated with Two Immiscible Fluids Under the Excitations of Multiple Wave Sources
249(18)
10.6.1 Volume Averaging Method
250(1)
10.6.2 Governing Equation Development
250(4)
10.6.3 Multisource Model
254(2)
10.6.4 Numerical Analyses
256(11)
Appendix A Double Complex Fourier Transform
267(4)
A.1 Fourier Transform of Function
267(4)
A.1.1 Fourier Transform of Derivatives of Functions
268(1)
A.1.2 Inverse of Fourier Transform
268(1)
A.1.3 Fourier Transform of the Dirac Delta Function
269(2)
Appendix B Evaluation of Certain Infinite Integrals
271(6)
Appendix C Numerical Evaluation of Certain Integrals
277(4)
C.1 The Numerical Evaluation of Cauchy Principal Values of the Integral
277(1)
C.2 Integral of the Form ƒ (b -- x)α (x -- a)β ƒ(x)dx
278(3)
Appendix D Trigonometric Formulae
281(6)
References 287(12)
Index 299