Atjaunināt sīkdatņu piekrišanu

WCDMA for UMTS: HSPA Evolution and LTE 5th edition [Hardback]

4.45/5 (13 ratings by Goodreads)
(Nokia Siemens Networks, Finland), (Nokia Siemens Networks, Finland)
  • Formāts: Hardback, 640 pages, height x width x depth: 248x175x34 mm, weight: 1196 g
  • Izdošanas datums: 06-Aug-2010
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 0470686464
  • ISBN-13: 9780470686461
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 119,67 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 640 pages, height x width x depth: 248x175x34 mm, weight: 1196 g
  • Izdošanas datums: 06-Aug-2010
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 0470686464
  • ISBN-13: 9780470686461
Citas grāmatas par šo tēmu:
The fifth edition of this comprehensive work on third generation mobile telecommunication and data networks includes updates on the evolution from HSPA to HSPA+ as well as information on the latest industry standard LTE, moving the industry ever closer to its fourth generation. New information on multi-carrier HSPA issues and hardware topics are included. Intended for network operators, hardware manufacturers, service providers and government regulators, this volume discusses in detail the technical specifications, engineering and policies of world-wide 3g cellular networks. Holma and Toskala are high level engineers at Nokia Siemens Networks, and other contributors include executives from global communications companies Annotation ©2010 Book News, Inc., Portland, OR (booknews.com) Now in its fifth edition, the bestselling book on UMTS has been updated to cover 3GPP WCDMA and High Speed Packet Access (HSPA) from Release 99 to Release 9. Written by leading experts in the field, the book explains HSPA performance based on simulations and field experience, and illustrates the benefits of HSPA evolution (HSPA+) both from the operators and from the end user’s perspective. It continues to provide updated descriptions of the 3GPP standard including the physical layer, radio protocols on layers 1-3 and a system architecture description. The challenges and solutions regarding terminal RF design are also discussed, including the benefits of HSPA+ power saving features. There is also the addition of a new chapter on femto cells as part of the updates to this fifth edition. Key updates include: HSPA evolution (HSPA+); Multicarrier HSPA solutions; HSPA femto cells (home base stations); TD-SCDMA system description; Terminal power consumption optimization. Updated description of LTE

Recenzijas

Preface xvii
Acknowledgements xix
Abbreviations xxi
1 Introduction
1(8)
Harri Holma
Antti Toskala
1.1 WCDMA Early Phase
1(1)
1.2 HSPA Introduction and Data Growth
2(2)
1.3 HSPA Deployments Globally
4(1)
1.4 HSPA Evolution
5(2)
1.5 HSPA Network Product
7(1)
1.6 HSPA Future Outlook
7(2)
References
8(1)
2 UMTS Services
9(38)
Harri Holma
Martin Kristensson
Jouni Salonen
Antti Toskala
Tommi Uitto
2.1 Introduction
9(2)
2.2 Voice
11(7)
2.2.1 Narrowband AMR and Wideband AMR Voice Services
12(2)
2.2.2 Circuit-Switched over HSPA
14(2)
2.2.3 Push-to-Talk over Cellular (PoC)
16(1)
2.2.4 Voice-over IP
17(1)
2.2.5 Key Performance Indicators for Voice
17(1)
2.3 Video Telephony
18(3)
2.3.1 Multimedia Architecture for Circuit Switched Connections
19(1)
2.3.2 Video Codec
20(1)
2.4 Messaging
21(1)
2.4.1 Short Messaging Service (SMS)
21(1)
2.4.2 Multimedia Messaging Service (MMS)
21(1)
2.4.3 Voice Mail and Audio Messaging
22(1)
2.4.4 Instant Messaging
22(1)
2.5 Mobile Email
22(1)
2.6 Browsing
23(1)
2.7 Application and Content Downloading
24(2)
2.8 Streaming
26(1)
2.9 Gaming
26(1)
2.10 Mobile Broadband for Laptop and Netbook Connectivity
27(3)
2.10.1 End-to-End Security
29(1)
2.10.2 Impact of Latency on Application Performance
29(1)
2.11 Social Networking
30(1)
2.12 Mobile TV
31(2)
2.13 Location-Based Services
33(1)
2.13.1 Cell Coverage-Based Location Calculation
33(1)
2.13.2 Assisted GPS (A-GPS)
33(1)
2.14 Machine-to-Machine Communications
34(1)
2.15 Quality of Service (QoS) Differentiation
35(5)
2.16 Maximum Air Interface Capacity
40(4)
2.17 Terminals
44(1)
2.18 Tariff Schemes
45(2)
References
45(2)
3 Introduction to WCDMA
47(14)
Peter Muszynski
Harri Holma
3.1 Introduction
47(1)
3.2 Summary of the Main Parameters in WCDMA
47(2)
3.3 Spreading and Despreading
49(2)
3.4 Multipath Radio Channels and Rake Reception
51(4)
3.5 Power Control
55(2)
3.6 Softer and Soft Handovers
57(4)
References
59(2)
4 Background and Standardization of WCDMA
61(14)
Antti Toskala
4.1 Introduction
61(1)
4.2 Background in Europe
61(3)
4.2.1 Wideband CDMA
62(1)
4.2.2 Wideband TDMA
63(1)
4.2.3 Wideband TDMA/CDMA
63(1)
4.2.4 OFDMA
64(1)
4.2.5 ODMA
64(1)
4.2.6 ETSI Selection
64(1)
4.3 Background in Japan
64(1)
4.4 Background in Korea
65(1)
4.5 Background in the United States
65(2)
4.5.1 W-CDMA N/A
65(1)
4.5.2 UWC-136
66(1)
4.5.3 cdma2000
66(1)
4.5.4 TR46.1
66(1)
4.5.5 WP-CDMA
66(1)
4.6 Creation of 3GPP
67(1)
4.7 How does 3GPP Operate?
68(1)
4.8 Creation of 3GPP2
69(1)
4.9 Harmonization Phase
69(1)
4.10 IMT-2000 Process in ITU
70(1)
4.11 Beyond 3GPP Release 99 WCDMA
70(2)
4.12 Industry Convergence with LTE and LTE-Advanced
72(3)
References
73(2)
5 Radio Access Network Architecture
75(22)
Fabio Longoni
Atte Lansisalmi
Antti Toskala
5.1 Introduction
75(3)
5.2 UTRAN Architecture
78(2)
5.2.1 The Radio Network Controller (RNC)
79(1)
5.2.2 The Node B (Base Station)
80(1)
5.3 General Protocol Model for UTRAN Terrestrial Interfaces
80(1)
5.3.1 General
80(1)
5.3.2 Horizontal Layers
80(1)
5.3.3 Vertical Planes
80(1)
5.4 Iu, the UTRAN-CN Interface
81(6)
5.4.1 Protocol Structure for Iu CS
82(1)
5.4.2 Protocol Structure for Iu PS
83(1)
5.4.3 RANAP Protocol
84(1)
5.4.4 Iu User Plane Protocol
85(1)
5.4.5 Protocol Structure of Iu BC, and the Service Area Broadcast Protocol
86(1)
5.5 UTRAN Internal Interfaces
87(4)
5.5.1 RNC-RNC Interface (Iur Interface) and the RNSAP Signaling
87(2)
5.5.2 RNC-Node B Interface and the NBAP Signaling
89(2)
5.6 UTRAN Enhancements and Evolution
91(2)
5.6.1 IP Transport in UTRAN
91(1)
5.6.2 Iu Flex
92(1)
5.6.3 Stand-Alone SMLC and Iupc Interface
92(1)
5.6.4 Interworking between GERAN and UTRAN, and the Iur-g Interface
92(1)
5.6.5 IP-Based RAN Architecture
92(1)
5.7 UMTS CN Architecture and Evolution
93(4)
5.7.1 Release 99 CN Elements
93(1)
5.7.2 Release 5 CN and IP Multimedia Subsystem
94(1)
References
95(2)
6 Physical Layer
97(44)
Antti Toskala
6.1 Introduction
97(1)
6.2 Transport Channels and Their Mapping to the Physical Channels
98(4)
6.2.1 Dedicated Transport Channel
99(1)
6.2.2 Common Transport Channels
99(2)
6.2.3 Mapping of Transport Channels onto the Physical Channels
101(1)
6.2.4 Frame Structure of Transport Channels
102(1)
6.3 Spreading and Modulation
102(8)
6.3.1 Scrambling
102(1)
6.3.2 Channelization Codes
102(2)
6.3.3 Uplink Spreading and Modulation
104(3)
6.3.4 Downlink Spreading and Modulation
107(3)
6.3.5 Transmitter Characteristics
110(1)
6.4 User Data Transmission
110(11)
6.4.1 Uplink Dedicated Channel
111(2)
6.4.2 Uplink Multiplexing
113(2)
6.4.3 User Data Transmission with the Random Access Channel
115(1)
6.4.4 Uplink Common Packet Channel
115(1)
6.4.5 Downlink Dedicated Channel
116(1)
6.4.6 Downlink Multiplexing
117(2)
6.4.7 Downlink Shared Channel
119(1)
6.4.8 Forward Access Channel for User Data Transmission
119(1)
6.4.9 Channel Coding for User Data
120(1)
6.4.10 Coding for TFCI Information
121(1)
6.5 Signaling
121(5)
6.5.1 Common Pilot Channel (CPICH)
121(1)
6.5.2 Synchronization Channel (SCH)
122(1)
6.5.3 Primary Common Control Physical Channel (Primary CCPCH)
122(1)
6.5.4 Secondary Common Control Physical Channel (Secondary CCPCH)
123(1)
6.5.5 Random Access Channel (RACH) for Signaling Transmission
124(1)
6.5.6 Acquisition Indicator Channel (AICH)
124(1)
6.5.7 Paging Indicator Channel (PICH)
125(1)
6.6 Physical Layer Procedures
126(10)
6.6.1 Fast Closed-Loop Power Control Procedure
126(1)
6.6.2 Open-Loop Power Control
126(1)
6.6.3 Paging Procedure
127(1)
6.6.4 RACH Procedure
127(1)
6.6.5 Cell Search Procedure
128(1)
6.6.6 Transmit Diversity Procedure
129(1)
6.6.7 Handover Measurements Procedure
130(2)
6.6.8 Compressed Mode Measurement Procedure
132(1)
6.6.9 Other Measurements
133(1)
6.6.10 Operation with Adaptive Antennas
134(1)
6.6.11 Site Selection Diversity Transmission
135(1)
6.7 Terminal Radio Access Capabilities
136(2)
6.8 Conclusion
138(3)
References
139(2)
7 Radio Interface Protocols
141(32)
Jukka Vialen
Antti Toskala
7.1 Introduction
141(1)
7.2 Protocol Architecture
142(1)
7.3 The Medium Access Control Protocol
143(4)
7.3.1 MAC Layer Architecture
143(1)
7.3.2 MAC Functions
144(1)
7.3.3 Logical Channels
145(1)
7.3.4 Mapping between Logical Channels and Transport Channels
145(1)
7.3.5 Example Data Flow Through the MAC Layer
146(1)
7.4 The Radio Link Control Protocol
147(3)
7.4.1 RLC Layer Architecture
147(1)
7.4.2 RLC Functions
148(1)
7.4.3 Example Data Flow Through the RLC Layer
149(1)
7.5 The Packet Data Convergence Protocol
150(1)
7.5.1 PDCP Layer Architecture
150(1)
7.5.2 PDCP Functions
151(1)
7.6 The Broadcast/Multicast Control Protocol
151(1)
7.6.1 BMC Layer Architecture
152(1)
7.6.2 BMC Functions
152(1)
7.7 Multimedia Broadcast Multicast Service
152(1)
7.8 The Radio Resource Control Protocol
153(17)
7.8.1 RRC Layer Logical Architecture
153(1)
7.8.2 RRC Service States
154(3)
7.8.3 RRC Functions and Signaling Procedures
157(13)
7.9 Early UE Handling Principles
170(1)
7.10 Improvements for Call Set-up Time Reduction
170(3)
References
171(2)
8 Radio Network Planning
173(46)
Harri Holma
Zhi-Chun Honkasalo
Seppo Hamalainen
Jaana Laiho
Kari Sipila
Achim Wacker
8.1 Introduction
173(1)
8.2 Dimensioning
174(20)
8.2.1 Radio Link Budgets
175(3)
8.2.2 Load Factors
178(10)
8.2.3 Capacity Upgrade Paths
188(1)
8.2.4 Capacity per km2
189(1)
8.2.5 Soft Capacity
190(3)
8.2.6 Network Sharing
193(1)
8.3 Capacity and Coverage Planning and Optimization
194(8)
8.3.1 Iterative Capacity and Coverage Prediction
194(1)
8.3.2 Planning Tool
194(3)
8.3.3 Case Study
197(2)
8.3.4 Network Optimization
199(3)
8.4 GSM Co-planning
202(2)
8.5 Inter-Operator Interference
204(6)
8.5.1 Introduction
204(2)
8.5.2 Uplink Versus Downlink Effects
206(1)
8.5.3 Local Downlink Interference
207(1)
8.5.4 Average Downlink Interference
207(2)
8.5.5 Path Loss Measurements
209(1)
8.5.6 Solutions to Avoid Adjacent Channel Interference
209(1)
8.6 WCDMA Frequency Variants
210(1)
8.7 UMTS Refarming to GSM Band
211(3)
8.7.1 Coverage of UMTS900
212(2)
8.8 Interference between GSM and UMTS
214(1)
8.9 Remaining GSM Voice Capacity
215(1)
8.10 Shared Site Solutions with GSM and UMTS
216(1)
8.11 Interworking of UMTS900 and UMTS2100
217(2)
References
218(1)
9 Radio Resource Management
219(36)
Harri Holma
Klaus Pedersen
Jussi Reunanen
Janne Laakso
Oscar Salonaho
9.1 Introduction
219(1)
9.2 Power Control
220(12)
9.2.1 Fast Power Control
220(6)
9.2.2 Outer Loop Power Control
226(6)
9.3 Handovers
232(14)
9.3.1 Intra-Frequency Handovers
232(9)
9.3.2 Inter-System Handovers between WCDMA and GSM
241(3)
9.3.3 Inter-Frequency Handovers within WCDMA
244(1)
9.3.4 Summary of Handovers
245(1)
9.4 Measurement of Air Interface Load
246(4)
9.4.1 Uplink Load
246(3)
9.4.2 Downlink Load
249(1)
9.5 Admission Control
250(2)
9.5.1 Admission Control Principle
250(1)
9.5.2 Wideband Power-Based Admission Control Strategy
250(2)
9.5.3 Throughput-Based Admission Control Strategy
252(1)
9.6 Load Control (Congestion Control)
252(3)
References
253(2)
10 Packet Scheduling
255(38)
Jeroen Wigard
Harri Holma
Renaud Cuny
Nina Madsen
Frank Frederiksen
Martin Kristensson
10.1 Introduction
255(1)
10.2 Transmission Control Protocol (TCP)
255(6)
10.3 Round Trip Time
261(3)
10.4 User-Specific Packet Scheduling
264(8)
10.4.1 Common Channels (RACH/FACH)
264(1)
10.4.2 Dedicated Channels (DCH)
265(2)
10.4.3 Downlink Shared Channel (DSCH)
267(1)
10.4.4 Uplink Common Packet Channel (CPCH)
267(1)
10.4.5 Selection of Transport Channel
268(2)
10.4.6 Paging Channel States
270(2)
10.5 Cell-Specific Packet Scheduling
272(3)
10.5.1 Priorities
274(1)
10.5.2 Scheduling Algorithms
274(1)
10.5.3 Packet Scheduler in Soft Handover
275(1)
10.6 Packet Data System Performance
275(5)
10.6.1 Link Level Performance
275(2)
10.6.2 System Level Performance
277(3)
10.7 Packet Data Application Performance
280(13)
10.7.1 Introduction to Application Performance
280(1)
10.7.2 Person-to-Person Applications
281(3)
10.7.3 Content-to-Person Applications
284(3)
10.7.4 Business Connectivity
287(2)
10.7.5 Conclusions on Application Performance
289(2)
References
291(2)
11 Physical Layer Performance
293(60)
Harri Holma
Jussi Reunanen
Leo Chan
Preben Mogensen
Klaus Pedersen
Kari Horneman
Jaakko Vihriala
Markku Juntti
11.1 Introduction
293(1)
11.2 Cell Coverage
293(11)
11.2.1 Uplink Coverage
295(9)
11.2.2 Downlink Coverage
304(1)
11.3 Downlink Cell Capacity
304(9)
11.3.1 Downlink Orthogonal Codes
305(5)
11.3.2 Downlink Transmit Diversity
310(2)
11.3.3 Downlink Voice Capacity
312(1)
11.4 Capacity Trials
313(17)
11.4.1 Single Cell Capacity Trials
313(14)
11.4.2 Multicell Capacity Trials
327(1)
11.4.3 Summary
328(2)
11.5 3GPP Performance Requirements
330(4)
11.5.1 Eb/N0 Performance
330(3)
11.5.2 RF Noise Figure
333(1)
11.6 Performance Enhancements
334(19)
11.6.1 Smart Antenna Solutions
334(6)
11.6.2 Multiuser Detection
340(9)
References
349(4)
12 High-Speed Downlink Packet Access
353(38)
Antti Toskala
Harri Holma
Troels Kolding
Preben Mogensen
Klaus Pedersen
Jussi Reunanen
12.1 Introduction
353(1)
12.2 Release 99 WCDMA Downlink Packet Data Capabilities
353(1)
12.3 The HSDPA Concept
354(2)
12.4 HSDPA Impact on Radio Access Network Architecture
356(1)
12.5 Release 4 HSDPA Feasibility Study Phase
357(1)
12.6 HSDPA Physical Layer Structure
357(8)
12.6.1 High-Speed Downlink Shared Channel (HS-DSCH)
357(4)
12.6.2 High-Speed Shared Control Channel (HS-SCCH)
361(1)
12.6.3 Uplink High-Speed Dedicated Physical Control Channel (HS-DPCCH)
362(1)
12.6.4 HSDPA Physical Layer Operation Procedure
363(2)
12.7 HSDPA Terminal Capability and Achievable Data Rates
365(1)
12.8 Mobility with HSDPA
366(4)
12.8.1 Measurement Event for Best Serving HS-DSCH Cell
367(1)
12.8.2 Intra-Node B HS-DSCH to HS-DSCH Handover
367(1)
12.8.3 Inter-Node-Node B HS-DSCH to HS-DSCH Handover
368(1)
12.8.4 HS-DSCH to DCH Handover
369(1)
12.9 HSDPA Performance
370(10)
12.9.1 Factors Governing Performance
371(1)
12.9.2 Spectral Efficiency, Code Efficiency and Dynamic Range
371(3)
12.9.3 User Scheduling, Cell Throughput and Coverage
374(4)
12.9.4 HSDPA Network Performance with Mixed Non-HSDPA and HSDPA Terminals
378(2)
12.10 HSPA Link Budget
380(2)
12.11 HSDPA Iub Dimensioning
382(2)
12.12 HSPA Round Trip Time
384(1)
12.13 Terminal Receiver Aspects
384(2)
12.14 Evolution in Release 6
386(2)
12.15 Conclusion
388(3)
References
388(3)
13 High-Speed Uplink Packet Access
391(18)
Antti Toskala
Harri Holma
Karri Ranta-Aho
13.1 Introduction
391(1)
13.2 Release 99 WCDMA Downlink Packet Data Capabilities
391(1)
13.3 The HSUPA Concept
392(1)
13.4 HSUPA Impact on Radio Access Network Architecture
393(2)
13.4.1 HSUPA Iub Operation
394(1)
13.5 HSUPA Feasibility Study Phase
395(1)
13.6 HSUPA Physical Layer Structure
395(1)
13.7 E-DCH and Related Control Channels
396(4)
13.7.1 E-DPDCH
396(2)
13.7.2 E-DPCCH
398(1)
13.7.3 E-HICH
399(1)
13.7.4 E-RGCH
399(1)
13.7.5 E-AGCH
399(1)
13.8 HSUPA Physical Layer Operation Procedure
400(2)
13.8.1 HSUPA and HSDPA Simultaneous Operation
401(1)
13.9 HSUPA Terminal Capability
402(1)
13.10 HSUPA Performance
403(5)
13.10.1 Increased Data Rates
404(1)
13.10.2 Physical Layer Retransmission Combining
404(1)
13.10.3 Node B-Based Scheduling
404(2)
13.10.4 HSUPA Link Budget Impact
406(1)
13.10.5 Delay and QoS
406(1)
13.10.6 Overall Capacity
407(1)
13.11 Conclusion
408(1)
References
408(1)
14 Multimedia Broadcast Multicast Service (MBMS)
409(22)
Harri Holma
Martin Kristensson
Jorma Kaikkonen
14.1 Introduction
409(3)
14.2 MBMS Impact on Network Architecture
412(2)
14.3 High Level MBMS Procedures
414(1)
14.4 MBMS Radio Interface Channel Structure
415(3)
14.4.1 Logical Channels
415(1)
14.4.2 Transport Channels
416(1)
14.4.3 Physical Channels
416(1)
14.4.4 Point-to-Point and Point-to-Multipoint Connections
416(1)
14.4.5 Example Radio Interface Procedure during MBMS Session Start
417(1)
14.5 MBMS Terminal Capability
418(1)
14.5.1 Selective Combining and Soft Combining
418(1)
14.6 MBMS Performance
419(5)
14.6.1 3GPP Performance Requirements
419(2)
14.6.2 Simulated MBMS Cell Capacity
421(2)
14.6.3 Iub Transport Capacity
423(1)
14.7 MBMS Deployment and Use Cases
424(1)
14.8 Benchmarking of MBMS with DVB-H
425(1)
14.9 3GPP MBMS Evolution in Release 7
426(1)
14.10 Why Did MBMS Fail?
426(1)
14.11 Integrated Mobile Broadcast (IMB) in Release 8
427(1)
14.12 Conclusion
428(3)
References
429(2)
15 HSPA Evolution
431(24)
Harri Holma
Karri Ranta-Aho
Antti Toskala
15.1 Introduction
431(1)
15.2 Discontinuous Transmission and Reception (DTX/DRX)
431(2)
15.3 Circuit Switched Voice on HSPA
433(4)
15.4 Enhanced FACH and Enhanced RACH
437(2)
15.5 Latency
439(2)
15.6 Fast Dormancy
441(1)
15.7 Downlink 64QAM
442(2)
15.8 Downlink MIMO
444(3)
15.9 Transmit Diversity (TxAA)
447(1)
15.10 Uplink 16QAM
448(1)
15.11 UE Categories
449(1)
15.12 Layer 2 Optimization
450(1)
15.13 Architecture Evolution
451(1)
15.14 Conclusion
452(3)
References
453(2)
16 HSPA Multicarrier Evolution
455(12)
Harri Holma
Karri Ranta-Aho
Antti Toskala
16.1 Introduction
455(4)
16.2 Dual Cell HSDPA in Release 8
459(2)
16.3 Dual Cell HSUPA in Release 9
461(1)
16.4 Dual Cell HSDPA with MIMO in Release 9
462(1)
16.5 Dual Band HSDPA in Release 9
463(1)
16.6 Three and Four Carrier HSDPA in Release 10
464(1)
16.7 UE Categories
465(1)
16.8 Conclusion
465(2)
References
466(1)
17 UTRAN Long-Term Evolution
467(28)
Antti Toskala
Harri Holma
17.1 Introduction
467(1)
17.2 Multiple Access and Architecture Decisions
468(2)
17.3 LTE Impact on Network Architecture
470(1)
17.4 LTE Multiple Access
471(5)
17.4.1 OFDMA Principles
471(3)
17.4.2 SC-FDMA Principles
474(2)
17.5 LTE Physical Layer Design and Parameters
476(3)
17.6 LTE Physical Layer Procedures
479(4)
17.6.1 Random Access
479(1)
17.6.2 Data Reception and Transmission
479(2)
17.6.3 CQI Procedure
481(1)
17.6.4 Downlink Transmission Modes
482(1)
17.6.5 Uplink Transmission Modes
483(1)
17.6.6 LTE Physical Layer Compared to WCDMA
483(1)
17.7 LTE Protocols
483(4)
17.8 Performance
487(5)
17.8.1 Peak Bit Rates
487(1)
17.8.2 Spectral Efficiency
487(3)
17.8.3 Link Budget and Coverage
490(2)
17.9 LTE Device Categories
492(1)
17.10 LTE-Advanced Outlook
492(2)
17.11 Conclusion
494(1)
References
494(1)
18 TD-SCDMA
495(20)
Antti Toskala
Harri Holma
18.1 Introduction
495(2)
18.1.1 TDD
495(2)
18.2 Differences in the Network-Level Architecture
497(1)
18.3 TD-SCDMA Physical Layer
497(7)
18.3.1 Transport and Physical Channels
498(3)
18.3.2 Modulation and Spreading
501(1)
18.3.3 Physical Channel Structures, Slot and Frame Format
501(3)
18.4 TD-SCDMA Data Rates
504(1)
18.5 TD-SCDMA Physical Layer Procedures
505(3)
18.5.1 Power Control
505(1)
18.5.2 TD-SCDMA Receiver
505(1)
18.5.3 Uplink Synchronization
506(1)
18.5.4 Dynamic Channel Allocation
506(1)
18.5.5 Summary of the TD-SCDMA Physical Layer Operation
507(1)
18.6 TD-SCDMA Interference and Co-existence Considerations
508(4)
18.6.1 TDD-TDD Interference
508(1)
18.6.2 TDD and FDD Co-existence
509(2)
18.6.3 Conclusions on TDD and TD-SCDMA Interference
511(1)
18.7 Conclusion and Future Outlook on TD-SCDMA
512(3)
References
512(3)
19 Home Node B and Femtocells
515(32)
Troels Kolding
Hanns-Jurgen Schwarzbauer
Johanna Pekonen
Karol Drazynski
Jacek Gora
Maciej Pakulski
Patryk Pisowacki
Harri Holma
Antti Toskala
19.1 Introduction
515(2)
19.2 Home Node B Specification Work
517(1)
19.3 Technical Challenges of Uncoordinated Mass Deployment
518(1)
19.4 Home Node B Architecture
519(4)
19.4.1 Home Node B Protocols and Procedures for Network Interfaces
520(2)
19.4.2 Femtocell Indication on a Terminal Display
522(1)
19.5 Closed Subscriber Group
523(1)
19.5.1 Closed Subscriber Group Management
523(1)
19.5.2 Closed Subscriber Group Access Control
523(1)
19.6 Home Node B-Related Mobility
524(5)
19.6.1 Idle Mode Mobility
524(1)
19.6.2 Outbound Relocations
525(1)
19.6.3 Inbound Relocations
525(1)
19.6.4 Relocations between HNB Cells
526(1)
19.6.5 Paging Optimization
527(1)
19.6.6 Home Node B to Macro Handover
527(1)
19.6.7 Macro to Home Node B Handover
527(1)
19.6.8 Home Node B Cell Identification Ambiguity
528(1)
19.6.9 Summary of Home Node B-Related Mobility
529(1)
19.7 Home Node B Deployment and Interference Mitigation
529(16)
19.7.1 Home Node B Radio Frequency Aspects
529(1)
19.7.2 Recommended 3G Home Node B Measurements
530(2)
19.7.3 Home Node B Interference Considerations
532(2)
19.7.4 Adaptive Control of Home Node B Transmit Powers
534(2)
19.7.5 Femtocell Interference Simulations
536(4)
19.7.6 Network Planning Aspects
540(4)
19.7.7 Summary of Home Node B Frequency Usage
544(1)
19.8 Home Node B Evolution
545(1)
19.9 Conclusion
545(2)
References
546(1)
20 Terminal RF and Baseband Design Challenges
547(46)
Laurent Noel
Dominique Brunel
Antti Toskala
Harri Holma
20.1 Introduction
547(2)
20.2 Transmitter Chain System Design Challenges
549(7)
20.2.1 The Adjacent Channel Leakage Ratio/Power Consumption Trade-Off
549(5)
20.2.2 Phase Discontinuity
554(2)
20.3 Receiver Chain Design Challenges
556(11)
20.3.1 UE Reference Sensitivity System Requirements
556(7)
20.3.2 Inter-Operator Interference
563(3)
20.3.3 Impact of RF Impairments on HSDPA System Performance
566(1)
20.4 Improving Talk-Time with DTX/DRX
567(15)
20.4.1 Talk-Time Benchmark of Recent WCDMA Handsets
568(2)
20.4.2 Trend in RF-IC Power Consumption and Model
570(3)
20.4.3 Power Amplifier Control Schemes and Power Consumption Model
573(4)
20.4.4 UE Power Consumption Models
577(2)
20.4.5 Talk-Time Improvements in Circuit Switched Voice over HSPA with DTX/DRX
579(3)
20.5 Multi-Mode/Band Challenges
582(8)
20.5.1 From Mono-Mode/Mono-Band to Multi-Mode/Multi-Band and Diversity
582(2)
20.5.2 New Requirements Due to Co-existence
584(4)
20.5.3 Front End Integration Strategies and Design Trends
588(1)
20.5.4 Impact on Today's Architectures
588(2)
20.6 Conclusion
590(3)
References
590(3)
Index 593
Dr. Harri Holma, Principal Engineer at Nokia Siemens Networks, Finland.



Antti Toskala, Head of 3GPP Radio Standardization, Nokia Siemens Networks, Finland. Harri Holma and Antti Toskala both work on cutting edge technologies for mobile communications today. They co-edited the books LTE for UMTS - OFDMA and SC-FDMA Based Radio Access, HSDPA/HSUPA for UMTS: High Speed Radio Access for Mobile Communications and WCDMA for UMTS, 4th edition.