Atjaunināt sīkdatņu piekrišanu

E-grāmata: Web and Big Data: Third International Joint Conference, APWeb-WAIM 2019, Chengdu, China, August 1-3, 2019, Proceedings, Part II

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts - EPUB+DRM
  • Cena: 77,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This two-volume set, LNCS 11641 and 11642, constitutes  the thoroughly refereed proceedings of the Third International Joint Conference, APWeb-WAIM 2019, held in Chengdu, China, in August 2019.  

The 42 full papers presented together with 17 short papers, and 6 demonstration papers were carefully reviewed and selected from 180 submissions.
The papers are organized around the following topics: Big Data Analytics; Data and Information Quality; Data Mining and Application; Graph Data and Social Networks; Information Extraction and Retrieval; Knowledge Graph; Machine Learning; Recommender Systems; Storage, Indexing and Physical Database Design; Spatial, Temporal and Multimedia Databases; Text Analysis and Mining; and Demo.

Big Data Analytics.- Data and Information Quality.- Data Mining and
Application.- Graph Data and Social Networks.- Information Extraction and
Retrieval.- Knowledge Graph.- Machine Learning.- Recommender Systems.-
Storage, Indexing and Physical Database Design.- Spatial, Temporal and
Multimedia Databases.- Text Analysis and Mining.