Atjaunināt sīkdatņu piekrišanu

E-grāmata: Web Information Systems Engineering - WISE 2024: 25th International Conference, Doha, Qatar, December 2-5, 2024, Proceedings, Part II

Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 15437
  • Izdošanas datums: 02-Dec-2024
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9789819605675
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 77,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 15437
  • Izdošanas datums: 02-Dec-2024
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9789819605675
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This five-volume set LNCS 15436 -15440 constitutes the proceedings of the 25th International Conference on Web Information Systems Engineering, WISE 2024, held in Doha, Qatar, in December 2024.





The 110 full papers and 55 short papers were presented in these proceedings were carefully reviewed and selected from 368 submissions. The papers have been organized in the following topical sections as follows:





Part I : Information Retrieval and Text Processing; Text and Sentiment Analysis; Data Analysis and Optimisation; Query Processing and Information Extraction; Knowledge and Data Management.





Part II: Social Media and News Analysis; Graph Machine Learning on Web and Social; Trustworthy Machine Learning; and Graph Data Management.





Part III: Recommendation Systems; Web Systems and Architectures; and Humans and Web Security.





Part IV: Learning and Optimization; Large Language Models and their Applications; and AI Applications.





Part V: Security, Privacy and Trust; Online Safety and Wellbeing through AI; and Web Technologies.a





 
.- Social Media and News Analysis.



.- Misinformation in Reels, Influence of Contextual Superimposed Texts in
Short Videos.



.- What Did The People Say? Evaluating the Effect of Comment Summarisation
Tags on Perceived News Credibility Using Qualitative Approach.



.- Are fact checkers effective in the post truth world? Assessing impact of
fact checkers cross medium and platforms.



.- Target-Specific Hate Trend Prediction on Social Network.



.- Characterizing Collective Attention on Online Chats: A Three-Pronged
Approach.



.- The Influence of Social Networking Usage Experience and Activity on
Preferences of Explainable Artificial Intelligence (XAI) Representation
Methods in a Hate Speech Detection System.



.- Language Model-Based Approach for Multiclass Cyberbullying Detection.



.- MeTAN: Metaphoric Temporal Attention Network for depression detection on
Social Media.



.- EBUD: Evolving Disaster Burst Detection over Social Streams.



.- MAPX: An explainable model-agnostic framework for the detection of false
information on social media networks.



.- Graph Machine Learning on Web and Social.



.- Knowledge Graph Relation Patterns Networks for Recommendations.



.- Robust Graph Learning against Camouflaged Malicious Actors.



.- Label-enhanced Cross-modal Hashing with Dual-semantic Learning.



.- Towards Building a Lightweight and Powerful Computation Graph for Scalable
GNN.



.- Skill Vector Representation Learning for Collaborative Team
Recommendation:A Comparative Study.



.- Learning to Ask about Text Content in an Image with Fine-Grained
Features.



.- Trustworthy Machine Learning.



.- SARA: A Sparsity-Aware Efficient Oblivious Aggregation Service for
Federated Matrix Factorization.



.- VizardFL: Enabling Private Participation in Federated Learning Systems.



.- Deceptive Waves: Embedding Malicious Backdoors in PPG Authentication.



.- Exposing the Limitations of Machine Learning for Malware Detection Under
Concept Drift.



.- Intellectual Property Protection of Diffusion Models via the Watermark
Diffusion Process.



.- Evaluating Contrastive and Non-Contrastive Explanations for Language
Models: A Study on Faithfulness and Plausibility.



.- Model Extraction Attacks on Privacy-Preserving Deep Learning based Medical
Services.



.- On the Alignment of Group Fairness with Attribute Privacy.



.- Graph Data Management.



.- RPQBench: A Benchmark for Regular Path Queries on Graph Data.



.- Two Birds One Stone: Dual-Role Path Based Subgraph Matching Using Partial
Evaluation.



.- KRAFT: Leveraging Knowlegde Graphs for Interpretable Feature Generation.



.- Neuralizing Graph Edit Distance Computation with Fine-Grained Matching
Cost Prediction.



.- Scalable Optimization of Graph Pattern Queries Using Summary Graphs.



.- Combining Knowledge Graphs and NLP to Analyze Instant Messaging Data in
Criminal Investigations.



.- G-ETI: Incorporating Graph Information for Improved Unsupervised Event
Type Induction.



.- Estimation of Graph Features Based on Random Walks Using Neighbors'
Properties.



.- SemMatch: Semantics-Aware Matching for Causal Inference over Knowledge
Graphs.