Atjaunināt sīkdatņu piekrišanu

E-grāmata: Web Information Systems Engineering - WISE 2024: 25th International Conference, Doha, Qatar, December 2-5, 2024, Proceedings, Part IV

Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 15439
  • Izdošanas datums: 26-Nov-2024
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9789819605736
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 77,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 15439
  • Izdošanas datums: 26-Nov-2024
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9789819605736
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This five-volume set LNCS 15436 -15440 constitutes the proceedings of the 25th International Conference on Web Information Systems Engineering, WISE 2024, held in Doha, Qatar, in December 2024.





The 110 full papers and 55 short papers were presented in these proceedings were carefully reviewed and selected from 368 submissions. The papers have been organized in the following topical sections as follows:





Part I : Information Retrieval and Text Processing; Text and Sentiment Analysis; Data Analysis and Optimisation; Query Processing and Information Extraction; Knowledge and Data Management.





Part II: Social Media and News Analysis; Graph Machine Learning on Web and Social; Trustworthy Machine Learning; and Graph Data Management.





Part III: Recommendation Systems; Web Systems and Architectures; and Humans and Web Security.





Part IV: Learning and Optimization; Large Language Models and their Applications; and AI Applications.





Part V: Security, Privacy and Trust; Online Safety and Wellbeing through AI; and Web Technologies.a





 
.- Learning and Optimization.



.- PR-Rank: A Parameter Regression Approach for Learning-to-Rank Model
Adaptation without Target Domain Data.



.- Weighted Linear Regression with Optimized Gap for Learned Index.



.- TAKE: Tracing Associative Empathy Keywords for Generating Empathetic
Responses Based on Graph Attention.



.- Intent identification using few-shot and active learning with user
feedback.



.- CLIMB: Imbalanced Data Modelling using Contrastive Learning with Limited
 Labels.



.- Equivariant Diffusion-based Sequential Hypergraph Neural Networks with
Co-Attention Fusion for Information Diffusion Prediction.



.- CL3: A Collaborative Learning Framework for the Medical Data Ensuring Data
Privacy in the Hyperconnected Environment.



.- Selectivity Estimation for Spatial Filters using Optimizer Feedback: A
Machine Learning Perspective.



.- On Adversarial Training with Incorrect Labels.



.- Model Lake: a New Alternative for Machine Learning Models Management and
Governance.



.- A Benchmark Test Suite for Multiple Traveling Salesmen Problem with Pivot
Cities.



.- Large Language Models and their Applications.



.- Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for
Problem-Solving Improvement of LLMs.



.- Regularized Multi-LLMs Collaboration for Enhanced Score-based Causal
Discovery.



.- Combining Uncensored and Censored LLMs for Ransomware Generation.



.- Therapying Outside the Box: Innovating the Implementation and Evaulation
of CBT in Therapeutic Artificial Agents.



.- iText2KG: Incremental Knowledge Graphs Construction Using Large Language
Models.



.- Is this site legit?": LLMs for Scam Website Detection.



.- Towards Enhancing Linked Data Retrieval in Conversational UIs using Large
Language Models.



.- BioLinkerAI: Capturing Knowledge using LLMs to Enhance Biomedical Entity
Linking.



.- Enhancing LLMs Contextual Knowledge with Ontologies for Personalised Food
Recommendation.



.- ShizishanGPT: An Agricultural Large Language Model Integrating Tools and
Resources.



.- AI Applications.



.- Web-based AI Assistant for Medical Imaging: A Case Study on Predicting
Spontaneous Preterm Birth via Ultrasound Images.



.- Satellite-Driven Deep Learning Algorithm for Bathymetry Extraction.



.- Would You Trust an AI Doctor? Building Reliable Medical Predictions with
Kernel Dropout Uncertainty.



.- Empowering Visual Navigation: A Deep-Learning Solution for Enhanced
Accessibility and Safety among the Visually Impaired.



.- A Transformer and LSTM Model for Electricity Consumption Forecasting and
Users Behavior Influence.



.- Enhancing Customer Service Efficiency in the Holy Makkah Municipality
Using Machine Learning.



.- Motivation, Concerns, and Attitudes Towards AI: Differences by Gender,
Age, and Culture.



.- DefectClassifierX: A Cross-Platform Automated Pattern Classification
System for Wafer Defects.



.- Safe-Path: A Perspective on Next-Generation Road Safety Recommendations.



.- Unsupervised and Dynamic Dendrogram-based Visualization of Medical Data.



.- Federated Deep Learning Models for Stroke Prediction.