Atjaunināt sīkdatņu piekrišanu

E-grāmata: Web Information Systems Engineering - WISE 2024: 25th International Conference, Doha, Qatar, December 2-5, 2024, Proceedings, Part I

Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 15436
  • Izdošanas datums: 28-Nov-2024
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9789819605798
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 77,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 15436
  • Izdošanas datums: 28-Nov-2024
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9789819605798
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This five-volume set LNCS 15436 -15440 constitutes the proceedings of the 25th International Conference on Web Information Systems Engineering, WISE 2024, held in Doha, Qatar, in December 2024.





The 110 full papers and 55 short papers were presented in these proceedings were carefully reviewed and selected from 368 submissions. The papers have been organized in the following topical sections as follows:





Part I : Information Retrieval and Text Processing; Text and Sentiment Analysis; Data Analysis and Optimisation; Query Processing and Information Extraction; Knowledge and Data Management.





Part II: Social Media and News Analysis; Graph Machine Learning on Web and Social; Trustworthy Machine Learning; and Graph Data Management.





Part III: Recommendation Systems; Web Systems and Architectures; and Humans and Web Security.





Part IV: Learning and Optimization; Large Language Models and their Applications; and AI Applications.





Part V: Security, Privacy and Trust; Online Safety and Wellbeing through AI; and Web Technologies.a





 
.- Information Retrieval and Text Processing.



.- Learning Contrastive Representations for Dense Passage Retrieval in
Open-domain Conversational Question Answering.



.- Wikipedia Empowered Natural Language Interface for Web Search.



.- Mathematical Formulas-Based Scientific Literature Retrieval with
Heterogeneous Network Semantic Enhancement.



 .- MarkedDPR: Enhancing Dense Passage Retrieval with Exact Match Signals and
Synthetic Data Augmentation.



.- Text and Sentiment Analysis.



.- Explaining a Deep Learning Model for Aspect-Based Sentiment Analysis Using
SHAP.



.- Knowledge Injection from a Domain Sentiment Ontology in an Attention
Neural Network for Aspect-Based Sentiment Classification.



.- Multilingual, Cross-lingual, and Unilingual Models for ABSC.



.- From Data to Insights: Constructing and Evaluating a Hospitality Dataset
for Quadruple Aspect-Based Sentiment Analysis.



.- A Cross-Lingual Meta-Learning Method Based on Domain Adaptation for Speech
Emotion Recognition.



.- Data Analysis and Optimisation.



.- Representation with Minimized Max-error in Optimal Piecewise Linear
Approximation of Time Series Data.



.- A Big Data Drilling Method for Value Assessment of Leakage Data.



.- An Effective Tag Assignment Approach for Billboard Advertisement.



.- Early Discovery of Key Innovative Publications by Analyzing Emerging Topic
Trends.



.- Two-Stage Trained Stacking Model for Univariate Time Series Forecasting.



.- ITRA: Incremental Task Replanning Algorithm for multi-UAV Based on
Centralized-Distributed Negotiation.



.- Query Processing and Information Extraction.



.- RePair My Queries: Personalized Query Reformulation via Conditional
Transformers.



.- DORA: A Reliability-Associated Query Optimization Framework for Plan
Selection.



.- REXIO: Indexing for Low Write Amplification by Reducing Extra I/Os in
Key-Value Store under Mixed Read/Write Workloads.



.- Enhancing Multi-Hop Complex Question Answering with LLM-based
Pseudo-Document Generation and Adaptive Retrieval.



.- Enhancing RAGs Retrieval via Query Backtranslations.



.- Hierarchical Indexing for Interactive Zooming of Document Clusters.



.- Distributed k-hop Query Powered by an Asynchronous Framework.



.- Contract Clause Extraction Using Question- Answering Task.



.- Knowledge and Data Management.



.- Data- and Activity-centric Business Process Modeling: An Approach based on
Business Units.



.- Periphoscape: Enhance Wikipedia Browsing by Presenting Diverse Aspects of
Topics.



.- TERM: Tree Ensemble Models for Interpretable Rule Mining.



.- A high utility co-location pattern mining algorithm using multiple utility
thresholds.



.- Talking Buildings: Interactive Human-Building Smart-Bot for Smart
Buildings.



.- Concepts and Relations Features Are All You Need for Embedding-based
Ontology Matching.



.- An Ontological Approach for Anomaly Detection in Supply Chain-based
Business Processes.



.- Incorporating Taxonomic Reasoning and Regulatory Knowledge into Automated
Privacy Question Answering.



.- AutoTable: Effective and Efficient Automated Feature Transformation for
Tabular Data.