Atjaunināt sīkdatņu piekrišanu

E-grāmata: White Noise Analysis And Quantum Information

Edited by (Nus, S'pore), Edited by (Nagoya Univ & Meijo Univ, Japan), Edited by (Tokyo Univ Of Sci, Japan), Edited by (Tokyo Univ Of Sci, Japan), Edited by (Aichi Prefectural Univ, Japan & Yangon Univ, Myanmar), Edited by (Univ Di Roma Tor Vergata, Italy)
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 77,77 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This volume is to pique the interest of many researchers in the fields of infinite dimensional analysis and quantum probability. These fields have undergone increasingly significant developments and have found many new applications, in particular, to classical probability and to different branches of physics. These fields are rather wide and are of a strongly interdisciplinary nature. For such a purpose, we strove to bridge among these interdisciplinary fields in our Workshop on IDAQP and their Applications that was held at the Institute for Mathematical Sciences, National University of Singapore from 3-7 March 2014. Readers will find that this volume contains all the exciting contributions by well-known researchers in search of new directions in these fields.
Foreword ix
Preface xi
Extensions of Quantum Theory Canonically Associated to Classical Probability Measures
1(20)
Luigi Accardi
Hida Distribution Construction of Indefinite Metric (φp)d (d ≥ 4) Quantum Field Theory
21(14)
Sergio Albeverio
Minoru W. Yoshida
A Mathematical Realization of von Neumann's Measurement Scheme
35(8)
Masanari Asano
Masanori Ohya
Yuta Yamamori
On Random White Noise Processes with Memory for Time Series Analysis
43(10)
Christopher C. Bernido
M. Victoria Carpio-Bernido
Self-Repelling (Fractional) Brownian Motion Results and Open Questions
53(8)
Jinky Bornales
Ludwig Streit
Normal Approximation for White Noise Functionals by Stein's Method and Hida Calculus
61(36)
Louis H. Y. Chen
Yuh-Jia Lee
Hsin-Hung Shih
Sensitive Homology Searching Based on MTRAP Alignment
97(10)
Toshihide Hara
Masanori Ohya
Some of the Future Directions of White Noise Theory
107(14)
Takeyuki Hida
Local Statistics for Random Selfadjoint Operators
121(6)
Peter D. Hislop
Maddaly Krishna
Multiple Markov Properties of Gaussian Processes and Their Control
127(10)
Win Win Htay
Quantum Stochastic Differential Equations Associated with Square of Annihilation and Creation Processes
137(22)
Un Cig Ji
Kalyan B. Sinha
Ito Formula for Generalized Real and Complex White Noise Functional
159(16)
Yuh-Jia Lee
Quasi Quantum Quadratic Operators of M2(C)
175(16)
Farrukh Mukhamedov
New Noise Depending on the Space Parameter and the Concept of Multiplicity
191(10)
Si Si
A Hysteresis Effect on Optical Illusion and Non-Kolmogorovian Probability Theory
201(14)
Masanari Asano
Andrei Khrennikov
Masanori Ohya
Yoshiharu Tanaka
Note on Entropy-Type Complexity of Communication Processes 215
Noboru Watanabe