Atjaunināt sīkdatņu piekrišanu

Why AI/Data Science Projects Fail [Mīkstie vāki]

  • Formāts: Paperback / softback, 77 pages, height x width: 235x191 mm
  • Sērija : Synthesis Lectures on Computation and Analytics
  • Izdošanas datums: 18-Dec-2020
  • Izdevniecība: Morgan & Claypool Publishers
  • ISBN-10: 1636390382
  • ISBN-13: 9781636390383
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 52,05 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 77 pages, height x width: 235x191 mm
  • Sērija : Synthesis Lectures on Computation and Analytics
  • Izdošanas datums: 18-Dec-2020
  • Izdevniecība: Morgan & Claypool Publishers
  • ISBN-10: 1636390382
  • ISBN-13: 9781636390383
Citas grāmatas par šo tēmu:
Recent data shows that 87% of Artificial Intelligence/Big Data projects don’t make it into production (VB Staff, 2019), meaning that most projects are never deployed. This book addresses five common pitfalls that prevent projects from reaching deployment and provides tools and methods to avoid those pitfalls. Along the way, stories from actual experience in building and deploying data science projects are shared to illustrate the methods and tools. While the book is primarily for data science practitioners, information for managers of data science practitioners is included in the Tips for Managers sections.
Preface
Introduction and Background
Project Phases and Common Project Pitfalls
Define Phase
Making the Business Case: Assigning Value to Your Project
Acquisition and Exploration of Data Phase
Model-Building Phase
Interpret and Communicate Phase
Deployment Phase
Summary of the five Methods to Avoid Common Pitfalls
References
Author Biography