Atjaunināt sīkdatņu piekrišanu

Why AI/Data Science Projects Fail: How to Avoid Project Pitfalls Second Edition 2026 [Mīkstie vāki]

  • Formāts: Paperback / softback, 69 pages, height x width: 240x168 mm, 4 Illustrations, color; 5 Illustrations, black and white; X, 69 p. 9 illus., 4 illus. in color., 1 Paperback / softback
  • Sērija : Synthesis Lectures on Computation and Analytics
  • Izdošanas datums: 23-Aug-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031908694
  • ISBN-13: 9783031908699
  • Mīkstie vāki
  • Cena: 29,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 34,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 69 pages, height x width: 240x168 mm, 4 Illustrations, color; 5 Illustrations, black and white; X, 69 p. 9 illus., 4 illus. in color., 1 Paperback / softback
  • Sērija : Synthesis Lectures on Computation and Analytics
  • Izdošanas datums: 23-Aug-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031908694
  • ISBN-13: 9783031908699

This Second Edition addresses five common pitfalls that prevent projects from reaching deployment and provides tools and methods to avoid these pitfalls. Current statistics show that 87% of AI and Big Data projects fail by never reaching deployment, making this book an essential resource for data science and AI practitioners, as well as managers. The author illustrates the methods and tools by including real examples from her experience building and deploying data science and AI projects. This new edition builds upon the original book with revisions, updates and features a new chapter on Generative AI.

Introduction and Background.- Project Phases and Common Project
Pitfalls.- Five Methods to Avoid Common Pitfalls.- Define Phase.- Making the
Business Case: Assigning Value to Your Project.- Acquisition and Exploration
of Data Phase.- Model Building Phase.- Interpret and Communicate Phase.-
Deployment Phase.- Considerations for Generative AI Projects in the
Enterprise.- Summary of the Five Methods to Avoid Common Pitfalls.
Joyce Weiner is a Principal Engineer at Intel Corporation. Her area of technical expertise is data science and using data to drive efficiency. Joyce is a black belt in Lean Six Sigma. She has a B.S. in Physics from Rensselaer Polytechnic Institute and an M.S. in Optical Sciences from the University of Arizona.