Atjaunināt sīkdatņu piekrišanu

WiFi, WiMAX, and LTE Multi-hop Mesh Networks: Basic Communication Protocols and Application Areas [Hardback]

, (Nokia Research Center, 5 Wayside Road, Burlington, MA 01803, USA),
  • Formāts: Hardback, 280 pages, height x width x depth: 243x161x19 mm, weight: 517 g
  • Sērija : Information and Communication Technology Series
  • Izdošanas datums: 17-May-2013
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 0470481676
  • ISBN-13: 9780470481677
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 136,58 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 280 pages, height x width x depth: 243x161x19 mm, weight: 517 g
  • Sērija : Information and Communication Technology Series
  • Izdošanas datums: 17-May-2013
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 0470481676
  • ISBN-13: 9780470481677
Citas grāmatas par šo tēmu:
Wei (electrical engineering, National Taiwan U.), Rykowski (information technology, Poznan U. of Economics, Poland), and Indian computer scientist Dixit describe the technology of wireless mesh networks without delving into specialist details and using a minimum of mathematics and formulas. The technology is spreading from military to commercial spheres, and allows mobile and fixed devices to connect through radio interfaces or to extend their range through multi-hopping. They cover architectural requirements for multi-hop and ad-hoc networking, application areas, IEEE 802.11 wireless technologies, WiMAX, and long term evolution. Annotation ©2013 Book News, Inc., Portland, OR (booknews.com)

This book gives an overview of WiFi-based multihop relay networks and WiMAX based multihop relay networks. Ranging from introductory material to advanced topics, the book will discuss the latest advances in multi-hop and ad-hoc networking. It will also address applications for the emerging technology, as well as some important architectural issues.
Foreword xi
Preface xiii
About the Authors xvii
List of Figures xix
List of Tables xxv
1 Introduction 1(8)
2 Architectural Requirements for Multi-hop and Ad-Hoc Networking 9(33)
2.1 When and Where Do We Need Ad-Hoc Networking?
9(3)
2.2 When Do We Need Multi-hop? How Many Hops Are Sufficient/Necessary?
12(1)
2.3 Anonymity versus Authorization and Authentication
13(4)
2.4 Security and Privacy in Ad-Hoc Networks
17(1)
2.5 Security and Privacy in Multi-hop Networks
18(2)
2.6 Filtering the Traffic in Ad-Hoc Networking and Multi-hop Relaying
20(3)
2.7 QoS
23(1)
2.8 Addressability
24(4)
2.9 Searchability
28(1)
2.10 Ad-Hoc Contexts for Next-Generation Searching
29(2)
2.11 Personalization Aspects in Ad-Hoc Information Access
31(1)
2.12 Multi-hop Networking: Technical Aspects
32(2)
2.13 Summary
34(8)
2.13.1 Do We Really Need Ad-Hoc and Multi-hop Networking? If So, When and Where?
35(1)
2.13.2 When and Where Do We Need Ad-Hoc Networking?
35(1)
2.13.3 How Do We Effectively Combine Anonymity/Privacy with Safety/Security?
36(1)
2.13.4 How Do We Personalize Network Access, Including User-Oriented Information Filtering?
37(1)
2.13.5 How Do We Access Places/Devices/Information in a Highly Dynamic Environment of an Ad-Hoc and Multi-hop Network Affecting Addressability, Searchability, and Accessibility of Data?
37(1)
2.13.6 How Do We Support Frequently Dis- and Reconnected Users, Including Efficient Propagation of Important Information to Newcomers?
38(1)
2.13.7 How Many Hops Are Allowed/Effective for a Typical Multi-hop Information Exchange? Is Relaying Affected with the Security/Privacy Issues?
38(4)
3 Application Areas for Multi-hop and Ad-Hoc Networking 42(67)
3.1 Telematics
42(25)
3.1.1 Introduction to Telematics Applications
42(2)
3.1.2 Ad-Hoc Enhanced Navigation Support
44(8)
3.1.3 Traffic Lights Assistance
52(4)
3.1.4 CB-Net Application
56(6)
3.1.5 City-Transportation Integrated Support
62(5)
3.2 E-Ticket Applications
67(2)
3.3 Telemedicine
69(2)
3.4 Environment Protection
71(2)
3.5 Public Safety
73(11)
3.5.1 Ad-Hoc Monitoring for Public Safety Applications
74(7)
3.5.2 Broadcasting Public Safety Information
81(3)
3.6 Groupware
84(1)
3.7 Personal, Targeted, Contextual Marketing and Shopping Guidance
85(2)
3.8 Intelligent Building
87(7)
3.8.1 "Intelligent Hospital" Idea
90(2)
3.8.2 "Interactive Museum" Idea
92(1)
3.8.3 Intelligent Ad-Hoc Cooperation at a Workplace
93(1)
3.9 Business Aspects of Multi-hop and Ad-Hoc Networking
94(8)
3.9.1 Monetary Unit for Ad-Hoc and Multi-hop Services
94(2)
3.9.2 Which Ad-Hoc and Multi-hop Functionality Should Be Paid For?
96(1)
3.9.3 Quality-of-Service and Trustability
97(1)
3.9.4 Pay-per-Access Mode and Subscriptions
98(2)
3.9.5 Legal Regulations
100(1)
3.9.6 Ad-Hoc and Multi-hop Networking versus Commercial Networks and Network Providers
100(2)
3.10 Summary
102(7)
4 Mesh Networking Using IEEE 802.11 Wireless Technologies 109(13)
4.1 IEEE 802.11
110(6)
4.1.1 WiFi and IEEE 802.11 Wireless LAN
111(2)
4.1.2 IEEE 802.11 Mesh Network Architectures
113(3)
4.2 IEEE 802.11s: Standard for WLAN Mesh Networking
116(5)
4.2.1 Additional Functions in 802.11s
120(1)
4.2.2 WiFi Certification and Deployments of IEEE 802.11s
120(1)
4.3 Summary
121(1)
5 Wireless Relay Networking Using IEEE 802.16 WiMAX Technologies 122(99)
5.1 IEEE 802.16 Overview and Architecture
122(1)
5.2 IEEE 802.16j Relay System Overview
123(9)
5.2.1 Nontransparent Relay versus Transparent Relay
124(1)
5.2.2 Connection Types
125(1)
5.2.3 MAC PDU Transmission Mode
126(2)
5.2.4 Relay MAC PDU
128(3)
5.2.5 Subheaders in Relay MAC PDU
131(1)
5.3 IEEE 802.16j Frame Structure
132(7)
5.3.1 Frame Structure in Nontransparent Mode
135(2)
5.3.2 Frame Structure in Transparent Mode
137(2)
5.4 Path Management in 802.16j Relay
139(8)
5.4.1 Explicit Path Management
140(2)
5.4.2 Implicit Path Management
142(1)
5.4.3 Contiguous Integer Block CID Assignment for Implicit Path Management
143(1)
5.4.4 Bit Partition CID Assignment for Implicit Path Management
144(2)
5.4.5 Path Selection and Metrics
146(1)
5.5 Radio Resource Management
147(16)
5.5.1 RRM with Distributed Scheduling
147(1)
5.5.2 Bandwidth Request Mechanism in WiMAX
147(7)
5.5.3 Downlink Flow Control
154(2)
5.5.4 RRM with Centralized Scheduling
156(3)
5.5.5 SS-Initiated Bandwidth Request in Centralized Scheduling
159(4)
5.6 Interference Management
163(7)
5.6.1 Interference Measurement
163(4)
5.6.2 RS Neighborhood Discovery and Measurements
167(1)
5.6.3 Relay Amble (R-Amble) Transmission
168(2)
5.7 Initialization and Network Entry
170(7)
5.7.1 Network Entry Overview
170(2)
5.7.2 Network Entry for Relay Station
172(4)
5.7.3 Fast Reentry
176(1)
5.7.4 Network Entry for Subscriber Station (Through RS)
177(1)
5.8 Mobility Management and Handoff
177(12)
5.8.1 Design Issues: Mobility Management in Multi-hop Relay Network
177(2)
5.8.2 Overview of Mobile Station Handoff Protocol Design in 802.16j
179(1)
5.8.3 Neighborhood Network Topology Advertisement
180(1)
5.8.4 Mobile Node Scanning
181(2)
5.8.5 Association
183(2)
5.8.6 Handoff Execution
185(1)
5.8.7 Handoff Optimization with Context Transfer
186(1)
5.8.8 Mobile Relay Station Handoff
187(2)
5.9 Power Management
189(6)
5.9.1 Sleep Mode
191(2)
5.9.2 Idle Mode
193(2)
5.10 HARQ and Reliable Transmission
195(16)
5.10.1 Design Issues: HARQ in Multi-hop Relay Network
195(1)
5.10.2 Overview of HARQ Design in 802.16j
196(1)
5.10.3 HARQ in Centralized Scheduling
197(1)
5.10.4 Downlink HARQ in Nontransparent Mode
198(4)
5.10.5 Downlink HARQ in Transparent Mode: Hop-by-Hop HARQ Operation
202(2)
5.10.6 Downlink HARQ in Transparent Mode: RS-assisted HARQ
204(3)
5.10.7 Uplink HARQ in Nontransparent Mode
207(2)
5.10.8 Uplink HARQ in Transparent Mode
209(2)
5.10.9 HARQ in Distributed Scheduling
211(1)
5.11 Multicast, Broadcast, and RS Grouping
211(4)
5.11.1 Multicast and Broadcast
211(4)
5.12 RS Grouping
215(5)
5.13 Summary
220(1)
6 Wireless Relay Networking with Long Term Evolution (LTE) 221(24)
6.1 Overview of the LTE Relay System
221(5)
6.1.1 LTE Relay Deployment Scenario
223(1)
6.1.2 Overview of Resource Partitioning in In-Band Relay
224(2)
6.2 Physical Layer for LTE Relay
226(2)
6.2.1 Physical Layer Channels
226(1)
6.2.2 Frame Structure in Physical Layer Channels
227(1)
6.3 LTE Relay System Architecture
228(9)
6.3.1 Protocol Stacks for Radio Interface
228(3)
6.3.2 S1 Interface
231(3)
6.3.3 RN Initialization and Startup Procedure
234(3)
6.4 LTE Relay System Design Issues
237(5)
6.4.1 Overview of Architecture and Design Issues
237(1)
6.4.2 Design Issue: Downlink Flow Control
238(1)
6.4.3 Design Issue: End-to-End QoS Configuration
238(1)
6.4.4 Design Issue: Un Interface Configuration
239(1)
6.4.5 Design Issue: Connection Establishment
240(1)
6.4.6 Design Issue: Radio Link Failure and Connection Reestablishment
240(1)
6.4.7 Design Issue: Other Design Options
241(1)
6.5 Future Development in LTE Relay
242(2)
6.5.1 Mobile Relay
242(1)
6.5.2 Advanced Link Transmission
242(1)
6.5.3 Other Deployment Scenarios and Architecture
243(1)
6.6 Summary
244(1)
7 Summary 245(2)
References 247(4)
Index 251
HUNG-YU WEI, PhD, is Associate Professor in the Department of Electrical Engineering and Graduate Institute of Communication Engineering at National Taiwan University. He is an active participant in the IEEE 802.16 and 3GPP standardization.

JAROGNIEW RYKOWSKI, PhD, is an Associate Professor in the Department of Information Technology at Poznan University of Economics in Poland.

SUDHIR DIXIT, PhD, is the Director of Hewlett-Packard Laboratories India, an Adjunct Professor of Computer Science at the University of California, Davis (2009-2012), and a Docent in Broadband Mobile Communications for Emerging Economies at the University of Oulu in Finland. He is a Fellow of the IEEE, IET, and IETE.