Preface |
|
xv | |
Authors |
|
xix | |
|
|
1 | (14) |
|
1.1 Broad Context and Motivation |
|
|
1 | (1) |
|
1.2 Concurrent Engineering: A Road Map for Energy |
|
|
1 | (4) |
|
1.3 Quantitative Robust Control |
|
|
5 | (2) |
|
1.4 Novel CAD Toolbox for QFT Controller Design |
|
|
7 | (1) |
|
|
8 | (7) |
|
Part I Advanced Robust Control Techniques: QFT and Nonlinear Switching |
|
|
|
|
15 | (14) |
|
2.1 Quantitative Feedback Theory |
|
|
15 | (1) |
|
|
15 | (2) |
|
|
17 | (7) |
|
2.3.1 QFT Design Objective |
|
|
17 | (1) |
|
2.3.2 Parametric Uncertainty: A Basic Explanation |
|
|
17 | (1) |
|
|
17 | (1) |
|
2.3.2.2 Simple Mathematical Description |
|
|
18 | (1) |
|
2.3.3 Control System Performance Specifications |
|
|
18 | (2) |
|
2.3.4 QFT Design Overview |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
22 | (2) |
|
2.4 Insight into the QFT Technique |
|
|
24 | (3) |
|
|
24 | (1) |
|
2.4.2 Closed-Loop Formulation |
|
|
24 | (1) |
|
2.4.3 Results of Applying the QFT Design Technique |
|
|
24 | (1) |
|
2.4.4 Insight into the Use of the NC in the QFT Technique |
|
|
24 | (3) |
|
|
27 | (1) |
|
|
28 | (1) |
|
3 MISO Analog QFT Control System |
|
|
29 | (52) |
|
|
29 | (1) |
|
3.2 QFT Method (Single-Loop MISO System) |
|
|
29 | (2) |
|
3.3 Design Procedure Outline |
|
|
31 | (1) |
|
3.4 Minimum-Phase System Performance Specifications |
|
|
32 | (4) |
|
|
32 | (4) |
|
3.4.2 Disturbance-Rejection Models |
|
|
36 | (1) |
|
|
36 | (1) |
|
3.6 Plant Templates of P, (s), P(jωi) |
|
|
37 | (2) |
|
|
39 | (1) |
|
3.8 U-Contour (Stability Bound) |
|
|
39 | (2) |
|
3.9 Tracking Bounds BR(jω) on the NC |
|
|
41 | (4) |
|
3.10 Disturbance Bounds BD(jωi) |
|
|
45 | (8) |
|
3.10.1 Case 1: (d2(t) = D0u-1(t), d1(t) =0) |
|
|
45 | (1) |
|
|
45 | (1) |
|
3.10.1.2 Disturbance-Response Characteristic |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
47 | (2) |
|
|
49 | (1) |
|
|
49 | (1) |
|
3.10.2 Case 2:(d1(t) = D0u-1(t), d2(t) = 0) |
|
|
50 | (1) |
|
|
50 | (1) |
|
3.10.2.2 Disturbance Response Characteristics |
|
|
50 | (1) |
|
|
51 | (2) |
|
3.11 Composite Boundary B0(jω) |
|
|
53 | (1) |
|
|
54 | (5) |
|
3.13 Guidelines for Shaping L0(jω) |
|
|
59 | (1) |
|
3.14 Design of the Prefilter F(s) |
|
|
60 | (2) |
|
3.15 Basic Design Procedure for a MISO System |
|
|
62 | (3) |
|
|
65 | (10) |
|
|
75 | (1) |
|
3.18 Template Generation for Unstable Plants |
|
|
75 | (4) |
|
|
79 | (2) |
|
4 Discrete Quantitative Feedback Technique |
|
|
81 | (48) |
|
|
81 | (1) |
|
4.2 Bilinear Transformations |
|
|
82 | (7) |
|
4.2.1 ω- and ω'-Domain Transformations |
|
|
82 | (2) |
|
4.2.2 s-Plane and ω-Plane Relationship |
|
|
84 | (1) |
|
4.2.3 s- to z-Plane Transformation: Tustin Transformation |
|
|
85 | (4) |
|
4.3 Non-Minimum-Phase Analog Plant |
|
|
89 | (4) |
|
4.3.1 Analog QFT Design Procedure for an n.m.p. Plant |
|
|
91 | (2) |
|
4.4 Discrete MISO Model with Plant Uncertainty |
|
|
93 | (2) |
|
4.5 QFT ω-Domain DIG Design |
|
|
95 | (16) |
|
4.5.1 Closed-Loop System Specifications |
|
|
96 | (2) |
|
|
98 | (1) |
|
4.5.3 Bounds B(jυ) on L0(jω) |
|
|
99 | (1) |
|
4.5.4 Non-Minimum-Phase L0(ω) |
|
|
100 | (3) |
|
4.5.5 Synthesizing Lm0(ω) |
|
|
103 | (1) |
|
4.5.6 ω =120 Is Too Small |
|
|
104 | (3) |
|
4.5.7 Error in the Design |
|
|
107 | (3) |
|
4.5.8 Design of the Prefilter F(ω) |
|
|
110 | (1) |
|
|
111 | (4) |
|
4.7 Basic Design Procedure for a MISO S-D Control System |
|
|
115 | (3) |
|
4.8 QFT Technique Applied to the PCT System |
|
|
118 | (7) |
|
4.8.1 Introduction to PCT System DIG Technique |
|
|
118 | (2) |
|
|
120 | (1) |
|
4.8.3 S-D Control System Example |
|
|
121 | (2) |
|
4.8.4 PCT System of Figure 4.9 |
|
|
123 | (2) |
|
|
125 | (1) |
|
4.9 Applicability of Design Technique to Other Plants |
|
|
125 | (1) |
|
4.10 Designing L(ω) Directly |
|
|
126 | (1) |
|
|
126 | (3) |
|
4.11.1 Minimum-Phase, Non-Minimum-Phase, and Unstable P(s) |
|
|
126 | (1) |
|
4.11.2 Digital Controller Implementation |
|
|
126 | (1) |
|
|
127 | (2) |
|
|
129 | (44) |
|
|
129 | (1) |
|
5.2 Examples and Motivation |
|
|
129 | (8) |
|
|
129 | (4) |
|
5.2.2 Introduction to MIMO Compensation |
|
|
133 | (2) |
|
|
135 | (2) |
|
5.3 MIMO Systems---Characteristics and Overview |
|
|
137 | (6) |
|
5.3.1 Loops Coupling and Controller Structure |
|
|
137 | (1) |
|
5.3.1.1 Interaction Analysis |
|
|
138 | (2) |
|
5.3.2 Multivariable Poles and Zeros |
|
|
140 | (1) |
|
|
140 | (1) |
|
|
140 | (1) |
|
5.3.3.2 Effect of Poles and Zeros |
|
|
141 | (1) |
|
5.3.3.3 Disturbance and Noise Signals |
|
|
141 | (1) |
|
|
141 | (1) |
|
|
142 | (1) |
|
5.4 MIMO QFT Control---Overview |
|
|
143 | (3) |
|
5.5 Nonsequential Diagonal MIMO QFT (Method 1) |
|
|
146 | (15) |
|
5.5.1 Effective MISO Equivalents |
|
|
147 | (4) |
|
5.5.2 Effective MISO Loops of the MIMO System |
|
|
151 | (1) |
|
5.5.3 Example: The 2 x 2 Plant |
|
|
151 | (2) |
|
|
153 | (5) |
|
5.5.5 Constraints on the Plant Matrix |
|
|
158 | (3) |
|
5.6 Sequential Diagonal MIMO QFT (Method 2) |
|
|
161 | (4) |
|
5.7 Basically Noninteracting Loops |
|
|
165 | (1) |
|
5.8 MIMO QFT with External (Input) Disturbances |
|
|
166 | (5) |
|
|
171 | (2) |
|
|
173 | (34) |
|
|
173 | (1) |
|
6.2 Non-Diagonal MIMO QFT: A Coupling Minimization Technique (Method 3) |
|
|
174 | (5) |
|
|
175 | (2) |
|
6.2.2 Disturbance Rejection at Plant Input |
|
|
177 | (1) |
|
6.2.3 Disturbance Rejection at Plant Output |
|
|
178 | (1) |
|
|
179 | (2) |
|
6.4 Optimum Non-Diagonal Compensator |
|
|
181 | (1) |
|
|
182 | (1) |
|
6.4.2 Disturbance Rejection at Plant Input |
|
|
182 | (1) |
|
6.4.3 Disturbance Rejection at Plant Output |
|
|
182 | (1) |
|
|
182 | (1) |
|
|
182 | (1) |
|
6.5.2 Disturbance Rejection at Plant Input |
|
|
183 | (1) |
|
6.5.3 Disturbance Rejection at Plant Output |
|
|
183 | (1) |
|
6.6 Quality Function of the Designed Compensator |
|
|
183 | (1) |
|
|
184 | (3) |
|
|
184 | (3) |
|
6.8 Some Practical Issues |
|
|
187 | (1) |
|
6.9 Non-Diagonal MIMO QFT: A Generalized Technique (Method 4) |
|
|
187 | (1) |
|
|
188 | (7) |
|
6.10.1 Case 1: Reference Tracking and Disturbance Rejection at Plant Output |
|
|
189 | (1) |
|
|
189 | (4) |
|
6.10.2 Case 2: Disturbance Rejection at Plant Input |
|
|
193 | (1) |
|
6.10.3 Stability Conditions and Final Implementation |
|
|
194 | (1) |
|
6.10.3.1 Stability Conditions |
|
|
194 | (1) |
|
6.10.3.2 Final Implementation |
|
|
194 | (1) |
|
6.11 Translating Matrix Performance Specifications |
|
|
195 | (10) |
|
|
195 | (1) |
|
|
195 | (1) |
|
6.11.1.2 Disturbance Rejection at Plant Output |
|
|
195 | (1) |
|
6.11.1.3 Disturbance Rejection at Plant Input |
|
|
196 | (1) |
|
6.11.1.4 Noise Attenuation |
|
|
196 | (1) |
|
6.11.1.5 General Expression |
|
|
196 | (5) |
|
|
201 | (1) |
|
|
201 | (1) |
|
6.11.2.2 Disturbance Rejection at Plant Output |
|
|
202 | (1) |
|
6.11.2.3 Disturbance Rejection at Plant Input |
|
|
203 | (1) |
|
6.11.2.4 Noise Attenuation |
|
|
204 | (1) |
|
6.12 Comparison of Methods 3 and 4 |
|
|
205 | (1) |
|
|
205 | (2) |
|
7 QFT for Distributed Parameter Systems |
|
|
207 | (20) |
|
|
207 | (1) |
|
|
207 | (1) |
|
7.3 Generalized DPS Control System Structure |
|
|
208 | (3) |
|
7.4 Extension of Quantitative Feedback Theory to DPS |
|
|
211 | (4) |
|
7.4.1 Classical QFT for Lumped Systems |
|
|
211 | (2) |
|
7.4.2 QFT for Distributed Parameter Systems |
|
|
213 | (2) |
|
7.5 Modeling Approaches for PDE |
|
|
215 | (1) |
|
|
216 | (9) |
|
7.6.1 Bernoulli-Euler Beam |
|
|
216 | (1) |
|
|
216 | (1) |
|
|
217 | (1) |
|
7.6.1.3 Control Specifications |
|
|
217 | (1) |
|
7.6.1.4 Compensator Design |
|
|
218 | (1) |
|
|
219 | (1) |
|
7.6.2 Heat Equation Problem |
|
|
220 | (1) |
|
|
220 | (1) |
|
|
221 | (1) |
|
7.6.2.3 Control Specifications |
|
|
222 | (1) |
|
7.6.2.4 Compensator Design |
|
|
223 | (1) |
|
|
223 | (2) |
|
|
225 | (2) |
|
8 Nonlinear Switching Control Techniques |
|
|
227 | (18) |
|
|
227 | (1) |
|
8.2 System Stability under Switching |
|
|
227 | (6) |
|
|
233 | (1) |
|
|
234 | (7) |
|
|
241 | (4) |
|
Part II Wind Turbine Control |
|
|
|
9 Introduction to Wind Energy Systems |
|
|
245 | (12) |
|
|
245 | (1) |
|
9.2 Birth of Modern Wind Turbines |
|
|
246 | (1) |
|
9.3 Market Sizes and Investments |
|
|
247 | (1) |
|
9.4 Future Challenges and Opportunities |
|
|
248 | (7) |
|
9.4.1 Offshore Wind Turbine Applications (Application 1) |
|
|
248 | (1) |
|
9.4.2 Extreme Weather Conditions (Application 2) |
|
|
249 | (1) |
|
9.4.3 Airborne Wind Turbines (Application 3) |
|
|
249 | (1) |
|
9.4.4 Cost Reduction for Zero Incentive (TC 1) |
|
|
249 | (3) |
|
9.4.5 Efficiency Maximization (TC 2) |
|
|
252 | (1) |
|
9.4.6 Mechanical Load Attenuation (TC 3) |
|
|
253 | (1) |
|
9.4.7 Large-Scale Grid Penetration (TC 4) |
|
|
254 | (1) |
|
|
255 | (2) |
|
10 Standards and Certification for Wind Turbines |
|
|
257 | (12) |
|
|
257 | (1) |
|
10.2 Standards: Definition and Strategic Value |
|
|
257 | (1) |
|
10.3 Standards: Structure and Development |
|
|
258 | (1) |
|
10.4 Certification of Wind Turbines |
|
|
258 | (6) |
|
|
260 | (3) |
|
|
263 | (1) |
|
10.4.3 Manufacturing Evaluation |
|
|
263 | (1) |
|
|
263 | (1) |
|
10.4.5 Project Certificate |
|
|
263 | (1) |
|
|
264 | (3) |
|
10.5.1 Turbulence Intensity and Wind Classes |
|
|
264 | (1) |
|
10.5.2 Wind Speed Distribution |
|
|
265 | (1) |
|
10.5.3 Wind Speed Profile |
|
|
266 | (1) |
|
10.5.4 Frequency Analysis: Campbell Diagram |
|
|
266 | (1) |
|
|
267 | (2) |
|
11 Wind Turbine Control Objectives and Strategies |
|
|
269 | (12) |
|
|
269 | (1) |
|
|
269 | (1) |
|
|
270 | (5) |
|
11.3.1 Constant-Speed Wind Turbines |
|
|
270 | (1) |
|
11.3.2 Variable-Speed Wind Turbines |
|
|
271 | (2) |
|
11.3.3 Passive Stall Control |
|
|
273 | (1) |
|
11.3.4 Variable Pitch Control |
|
|
273 | (1) |
|
11.3.5 Active Stall Control |
|
|
274 | (1) |
|
|
275 | (5) |
|
|
276 | (1) |
|
|
277 | (1) |
|
|
277 | (1) |
|
|
277 | (1) |
|
11.4.5 Main Control Loops |
|
|
278 | (1) |
|
|
278 | (1) |
|
|
279 | (1) |
|
|
279 | (1) |
|
|
280 | (1) |
|
11.4.7 Supervisory Control and Data Acquisition |
|
|
280 | (1) |
|
|
280 | (1) |
|
12 Aerodynamics and Mechanical Modeling of Wind Turbines |
|
|
281 | (34) |
|
|
281 | (1) |
|
|
281 | (12) |
|
12.2.1 Maximum Aerodynamic Efficiency: Betz Limit |
|
|
281 | (5) |
|
12.2.2 Wake Rotation Effect |
|
|
286 | (1) |
|
12.2.3 Wind Turbine Blades and Rotor Terminology |
|
|
287 | (3) |
|
12.2.3.1 Additional Symbols and Terminology |
|
|
290 | (1) |
|
12.2.4 Effect of Drag and Number of Blades |
|
|
291 | (1) |
|
12.2.5 Actual Wind Turbines |
|
|
291 | (2) |
|
|
293 | (20) |
|
12.3.1 Euler-Lagrange Energy-Based Description |
|
|
293 | (1) |
|
12.3.1.1 Symbols and Terminology |
|
|
293 | (2) |
|
12.3.1.2 Equations of Motion |
|
|
295 | (1) |
|
12.3.2 Mechanical Dynamics of Direct-Drive Wind Turbines (Gearless) |
|
|
295 | (4) |
|
12.3.3 Mechanical Dynamics of DFIG Wind Turbines (with Gearbox) |
|
|
299 | (5) |
|
12.3.4 Wind Turbine Transfer Matrix |
|
|
304 | (5) |
|
12.3.5 Rotor Speed Wind Turbine Transfer Functions |
|
|
309 | (4) |
|
|
313 | (2) |
|
13 Electrical Modeling of Wind Turbines |
|
|
315 | (16) |
|
|
315 | (1) |
|
|
315 | (9) |
|
13.2.1 Electrical Machine and Park's Transformation |
|
|
315 | (2) |
|
13.2.2 Squirrel Cage Induction Generator |
|
|
317 | (2) |
|
13.2.3 Doubly Fed Induction Generator |
|
|
319 | (2) |
|
13.2.4 Direct-Drive Synchronous Generator |
|
|
321 | (3) |
|
13.3 Power Electronic Converters |
|
|
324 | (1) |
|
13.4 Power Quality Characteristics |
|
|
325 | (2) |
|
|
325 | (1) |
|
13.4.2 Harmonics and Interharmonics |
|
|
325 | (1) |
|
|
326 | (1) |
|
13.4.4 Reactive Power and Power Factor |
|
|
326 | (1) |
|
|
327 | (1) |
|
13.5 Wind Farms Integration in the Power System |
|
|
327 | (2) |
|
13.5.1 Capacity Factor of a Wind Farm |
|
|
327 | (1) |
|
13.5.2 Limited Transmission Capacity |
|
|
328 | (1) |
|
|
328 | (1) |
|
|
329 | (2) |
|
14 Advanced Pitch Control System Design |
|
|
331 | (24) |
|
|
331 | (1) |
|
14.2 QFT Robust Control Design |
|
|
332 | (14) |
|
14.2.1 Model, Parameters, and Uncertainty Definition |
|
|
332 | (3) |
|
14.2.2 Performance Specifications |
|
|
335 | (4) |
|
14.2.3 Controller Loop Shaping |
|
|
339 | (1) |
|
14.2.4 Performance Validation |
|
|
339 | (4) |
|
14.2.5 A More General/Flexible Model Definition |
|
|
343 | (3) |
|
14.3 Nonlinear Switching Multi-Objective Design |
|
|
346 | (5) |
|
14.3.1 Model, Parameters, and Uncertainty Definition |
|
|
346 | (1) |
|
14.3.2 Performance Specifications |
|
|
346 | (1) |
|
|
347 | (2) |
|
14.3.4 Performance Validation |
|
|
349 | (2) |
|
14.4 Nonlinear Robust Control Design for Large Parameter Variation |
|
|
351 | (2) |
|
|
353 | (2) |
|
15 Experimental Results with the Direct-Drive Wind Turbine TWT-1.65 |
|
|
355 | (24) |
|
|
355 | (1) |
|
15.2 Variable-Speed Direct-Drive Torres Wind Turbine Family |
|
|
356 | (10) |
|
15.3 Torres Wind Turbine Pitch and Rotor Speed Control Results |
|
|
366 | (2) |
|
15.4 Wind Farm Grid Integration: Torres Wind Turbine Results |
|
|
368 | (5) |
|
15.5 Voltage Dip Solutions: Torres Wind Turbine Results |
|
|
373 | (3) |
|
|
376 | (3) |
|
16 Blades Manufacturing: MIMO QFT Control for Industrial Furnaces |
|
|
379 | (22) |
|
|
379 | (1) |
|
|
379 | (2) |
|
16.3 Industrial Furnace Description |
|
|
381 | (2) |
|
|
383 | (4) |
|
16.5 Estimation of Furnace Parameters |
|
|
387 | (1) |
|
16.6 MIMO QFT Controller Design |
|
|
388 | (9) |
|
16.6.1 Model and Parametric Uncertainty |
|
|
388 | (3) |
|
16.6.2 Control Specifications |
|
|
391 | (1) |
|
16.6.2.1 Robust Stability |
|
|
391 | (1) |
|
16.6.2.2 Reference Tracking |
|
|
391 | (1) |
|
16.6.2.3 Disturbance Rejection at Plant Input |
|
|
391 | (1) |
|
16.6.3 MIMO Design Procedure |
|
|
391 | (6) |
|
16.7 Experimental Results |
|
|
397 | (2) |
|
|
399 | (2) |
|
17 Smart Wind Turbine Blades |
|
|
401 | (4) |
|
|
401 | (1) |
|
|
401 | (2) |
|
|
403 | (1) |
|
|
404 | (1) |
|
18 Offshore Wind Energy: Overview |
|
|
405 | (14) |
|
|
405 | (1) |
|
18.2 History of Offshore Platforms |
|
|
406 | (1) |
|
|
407 | (1) |
|
18.4 Offshore Floating Wind Turbines |
|
|
408 | (9) |
|
|
417 | (2) |
|
19 Airborne Wind Energy Systems |
|
|
419 | (8) |
|
|
419 | (1) |
|
19.2 Overview of Airborne Wind Energy Systems |
|
|
419 | (3) |
|
|
422 | (3) |
|
|
425 | (2) |
Appendix A Templates Generation |
|
427 | (4) |
Appendix B Inequality Bound Expressions |
|
431 | (6) |
Appendix C Analytical QFT Bounds |
|
437 | (18) |
Appendix D Essentials for Loop Shaping |
|
455 | (16) |
Appendix E Fragility Analysis with QFT |
|
471 | (10) |
Appendix F QFT Control Toolbox: User's Guide |
|
481 | (28) |
Appendix G Controller Design Examples |
|
509 | (20) |
Appendix H Conversion of Units |
|
529 | (2) |
Problems |
|
531 | (22) |
Answers to Selected Problems |
|
553 | (6) |
References |
|
559 | (24) |
Index |
|
583 | |