Atjaunināt sīkdatņu piekrišanu

E-grāmata: Working with Network Data: A Data Science Perspective

(Indiana University, Bloomington), (University of Vermont)
  • Formāts: PDF+DRM
  • Izdošanas datums: 31-May-2024
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781009212618
  • Formāts - PDF+DRM
  • Cena: 59,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 31-May-2024
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781009212618

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Drawing examples from real-world networks, this essential book traces the methods behind network analysis and equips you with a toolbox of diverse methods and data modelling approaches. Suitable for both graduate students and researchers across a range of disciplines, this novel text provides a fast-track to network data expertise.

Drawing examples from real-world networks, this essential book traces the methods behind network analysis and explains how network data is first gathered, then processed and interpreted. The text will equip you with a toolbox of diverse methods and data modelling approaches, allowing you to quickly start making your own calculations on a huge variety of networked systems. This book sets you up to succeed, addressing the questions of what you need to know and what to do with it, when beginning to work with network data. The hands-on approach adopted throughout means that beginners quickly become capable practitioners, guided by a wealth of interesting examples that demonstrate key concepts. Exercises using real-world data extend and deepen your understanding, and develop effective working patterns in network calculations and analysis. Suitable for both graduate students and researchers across a range of disciplines, this novel text provides a fast-track to network data expertise.

Recenzijas

'An essential resource for newcomers to network science, this book expertly addresses the practical challenges of handling network data. Through a rich array of real-world examples and hands-on exercises, Bagrow and Ahn skillfully guide readers through the complexities of conceptualizing and analyzing networked data, making this text a fundamental tool for students and researchers eager to explore the power of connections across various disciplines.' Albert-Lįszló Barabįsi, Dodge Distinguished Professor of Network Science at Northeastern University

Papildus informācija

Suitable for students and researchers in a range of disciplines, this novel text provides a fast-track to network data expertise.
Contents; Preface; Part I. Background:
1. A whirlwind tour of network
science;
2. Network data across fields;
3. Data ethics;
4. Primer; Part II.
Applications, Tools and Tasks:
5. The life-cycle of a network study;
6.
Gathering data;
7. Extracting networks from data the 'upstream task';
8.
Implementation: storing and manipulating network data;
9. Incorporating node
and edge attributes;
10. Awful errors and how to amend them;
11. Explore and
explain: statistics for network data;
12. Understanding network structure and
organization;
13. Visualizing networks;
14. Summarizing and comparing
networks;
15. Dynamics and dynamic networks;
16. Machine learning; Interlude
Good practices for scientific computing;
17. Research record-keeping;
18.
Data provenance;
19. Reproducible and reliable code;
20. Helpful tools; Part
III. Fundamentals:
21. Networks demand network thinking: the friendship
paradox;
22. Network models;
23. Statistical models and inference;
24.
Uncertainty quantification and error analysis;
25. Ghost in the matrix:
spectral methods for networks;
26. Embedding and machine learning;
27. Big
data and scalability; Conclusion; Bibliography; Index.
James Bagrow is Associate Professor in Mathematics & Statistics at the University of Vermont. He works at the intersection of data science, complex systems and applied mathematics, using cutting-edge methods, mathematical models and large-scale data to explore and understand complex networks and systems. Yong-Yeol Ahn is Professor at Indiana University and a former Visiting Professor at the Massachusetts Institute of Technology. He specializes in network and data science and machine learning, and his research on complex social and biological systems has been recognized by many awards, including the Microsoft Research Faculty Fellowship.