Atjaunināt sīkdatņu piekrišanu

Yield and Variability Optimization of Integrated Circuits Softcover reprint of the original 1st ed. 1995 [Mīkstie vāki]

  • Formāts: Paperback / softback, 234 pages, height x width: 235x155 mm, weight: 397 g, XVII, 234 p., 1 Paperback / softback
  • Izdošanas datums: 02-Nov-2012
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 146135935X
  • ISBN-13: 9781461359357
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 147,33 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 234 pages, height x width: 235x155 mm, weight: 397 g, XVII, 234 p., 1 Paperback / softback
  • Izdošanas datums: 02-Nov-2012
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 146135935X
  • ISBN-13: 9781461359357
Citas grāmatas par šo tēmu:
Traditionally, Computer Aided Design (CAD) tools have been used to create the nominal design of an integrated circuit (IC), such that the circuit nominal response meets the desired performance specifications. In reality, however, due to the disturbances ofthe IC manufacturing process, the actual performancesof the mass produced chips are different than those for the nominal design. Even if the manufacturing process were tightly controlled, so that there were little variations across the chips manufactured, the environmentalchanges (e. g. those oftemperature, supply voltages, etc. ) would alsomakethe circuit performances vary during the circuit life span. Process-related performance variations may lead to low manufacturing yield, and unacceptable product quality. For these reasons, statistical circuit design techniques are required to design the circuit parameters, taking the statistical process variations into account. This book deals with some theoretical and practical aspects of IC statistical design, and emphasizes how they differ from those for discrete circuits. It de­ scribes a spectrum of different statistical design problems, such as parametric yield optimization, generalized on-target design, variability minimization, per­ formance tunning, and worst-case design. The main emphasis of the presen­ tation is placed on the principles and practical solutions for performance vari­ ability minimization. It is hoped that the book may serve as an introductory reference material for various groups of IC designers, and the methodologies described will help them enhance the circuit quality and manufacturability. The book containsseven chapters.

Papildus informācija

Springer Book Archives
1 Introduction.- 1.1 Design for Quality and Manufacturability.- 1.2
Notation.- 1.3 Interpretation of Basic Concepts.- 1.4 Summary.- 2 Overview of
IC Statistical Modeling.- 2.1 Introduction.- 2.2 Process Variations.- 2.3
Environmental Variations.- 2.4 Statistical Macromodeling.- 2.5 Summary.- 3
Design of Experiments.- 3.1 Introduction.- 3.2 Experiment Analysis.- 3.3
Orthogonal Arrays.- 3.4 Main Effect Analysis.- 3.5 Interaction Analysis.- 3.6
Taguchi Experiments.- 3.7 Summary.- 4 Parametric Yield Maximization.- 4.1
Introduction.- 4.2 Yield Estimation.- 4.3 Indirect Yield Improvement.- 4.4
Direct Yield Optimization Methods.- 4.5 Generalized and Orthogonal
Array-Based Gradient Methods for Discrete Circuits.- 4.6 Gradient Methods for
Integrated Circuits.- 4.7 Examples.- 4.8 Summary.- 5 Variability Minimization
and Tuning.- 5.1 Introduction.- 5.2 Principles of Discrete Circuit
Variability Minimization.- 5.3 Principles of IC Variability Minimization.-
5.4 Factor Screening.- 5.5 Taguchis on-target Design.- 5.6 Two-Stage Design
Strategy.- 5.7 Example 4: CMOS Delay Circuit.- 5.8 Example 5: CMOS Clock
Driver.- 5.9 Summary.- 6 Worst-Case Measure Reduction.- 6.1 Introduction.-
6.2 The ±? Transistor Modeling.- 6.3 Worst-Case Measure Minimization.- 6.4
Comments on the ±? Model.- 6.5 Creation of Worst-Case Models From the
Statistical Model.- 6.6 Summary.- 7 Multi-Objective Circuit Optimization.-
7.1 Introduction.- 7.2 Multiple-Objective Optimization: An Overview.- 7.3
Fuzzy Sets.- 7.4 Multiple-Performance Statistical Optimization.- 7.5
Multiple-Performance Variability Minimization.- 7.6 Summary.- References.