Atjaunināt sīkdatņu piekrišanu

E-grāmata: Zhang Time Discretization (ZTD) Formulas and Applications

  • Formāts: 355 pages
  • Izdošanas datums: 07-Aug-2024
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781040091623
  • Formāts - EPUB+DRM
  • Cena: 175,32 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 355 pages
  • Izdošanas datums: 07-Aug-2024
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781040091623

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The book aims to solve the discrete implementation problems of continuous-time neural network models while improving the performance of neural networks by using various Zhang Time Discretization (ZTD) formulas.



This book aims to solve the discrete implementation problems of continuous-time neural network models while improving the performance of neural networks by using various Zhang Time Discretization (ZTD) formulas.

 

The authors summarize and present the systematic derivations and complete research of ZTD formulas from special 3S-ZTD formulas to general NS-ZTD formulas. These finally led to their proposed discrete-time Zhang neural network (DTZNN) algorithms, which are more efficient, accurate, and elegant. This book will open the door to scientific and engineering applications of ZTD formulas and neural networks, and will be a major inspiration for studies in neural network modeling, numerical algorithm design, prediction, and robot manipulator control.

 

The book will benefit engineers, senior undergraduates, graduate students, and researchers in the fields of neural networks, computer mathematics, computer science, artificial intelligence, numerical algorithms, optimization, robotics, and simulation modeling.

Recenzijas

``For those interested in exploring and handling the intricacies of discrete time-dependent problems, this book may offer a comprehensive and thought-provoking journey. It perhaps deserves serious and much consideration from academics and researchers in the fields.''

Professor Zibin Zheng, IEEE Fellow, Sun Yat-sen University, China

``The book is appealing for graduate students as well as academic and industrial researchers. Based on the systematic research of new effective time-discretization formulas, the book may generate curiosity and also happiness to its readers for learning more in the fields and researches.''

Professor Shuai Li, University of Oulu, Finland

1 Future Matrix Right Pseudoinversion 2 Future Equality-Constrained Quadratic Programming 3 Future Matrix Inversion With Noises 4 Future Matrix Pseudoinversion 5 Future Constrained Nonlinear Optimization With O(g3) 6 Future Unconstrained Nonlinear Optimization With O(g4) 7 Future Different-Layer Inequation-Equation System Solving With O(g5) 8 Future Matrix Square Root Finding With O(g6) 9 Tracking Control of Serial and Parallel Manipulators 10 Future Matrix Inversion with Sometimes-Singular Coefficient Matrix 11 Repetitive Motion Control of Redundant Manipulators 12 Future Different-Layer Equation System Solving 13 Future Matrix Equations Solving 14 Minimum Joint Motion Control of Redundant Manipulators 15 Euler-Precision General Formula of ZTD 16 Lagrange Numerical-Differentiation Formulas

Yunong Zhang, PH.D., earned his B.S. degree from Huazhong University of Science and Technology, Wuhan, China, in 1996, his M.S. degree from South China University of Technology, Guangzhou, China, in 1999, and his Ph.D. from the Chinese University of Hong Kong, Shatin, Hong Kong, China, in 2003. He is currently a professor at the School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China. Dr. Zhang was supported by the Program for New Century Excellent Talents in Universities in 2007. He received the Best Paper Award from the International Symposium on Systems and Control in Aeronautics and Astronautics (ISSCAA) in 2008 and the Best Paper Award from the International Conference on Automation and Logistics (ICAL) in 2011. He was among the Highly Cited Scholars of China selected and published by Elsevier from 2014 to 2022.

Jinjin Guo, Ph.D., earned her B.E. degree in measurement technology and instrument from Nanchang University, Nanchang, China, in 2016, her M.E. degree in control engineering from Sun Yat-sen University, Guangzhou, China, in 2018, and her Ph.D. in computer science and technology from Sun Yat-sen University, Guangzhou, China, in 2022. She is currently a lecturer at the School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China. Her main research interests include neural networks, numerical computation, and tracking control.