Atjaunināt sīkdatņu piekrišanu

E-grāmata: 5G Mobile and Wireless Communications Technology

3.29/5 (14 ratings by Goodreads)
Edited by , Edited by , Foreword by , Edited by , Foreword by (King's College London)
  • Formāts: PDF+DRM
  • Izdošanas datums: 02-Jun-2016
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781316655610
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 123,73 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 02-Jun-2016
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781316655610
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"Written by leading experts in 5G research, this book is a comprehensive overview of the current state of 5G. Covering everything from the most likely use cases, spectrum aspects, and a wide range of technology options to potential 5G system architectures, it is an indispensable reference for academics and professionals involved in wireless and mobile communications. Global research efforts are summarised, and key component technologies including D2D, mm-wave communications, massive MIMO, coordinated multi-point, wireless network coding, interference management and spectrum issues are described and explained. The significance of 5G for the automotive, building, energy, and manufacturing economic sectors is addressed, as is the relationship between IoT, machine type communications, and cyber-physical systems. This essential resource equips you with a solid insight into the nature, impact and opportunities of 5G"--

Recenzijas

'5G is the biggest opportunity ever for our industry. With capabilities much greater than today's networks, opportunities beyond our imagination will appear. With 5G, we will be able to digitalize industries and realize the full potential of a networked society. New ecosystems will emerge, including new players. To fulfill the expectations on 5G, the industry needs to work in close collaboration with a joint understanding of the technology and its potential. This book is an excellent knowledge base, explaining the potential of 5G and the required technology behind it.' Ulf Ewaldsson, Senior Vice President and CTO, Ericsson 'So far, cellular innovation has focused on driving data rates. With 5G, in addition we see the advent of low-latency Tactile Internet and massive IoT generating new opportunities for society. The first comprehensive view on 5G, based mainly on the EU METIS project, this book gives a great insight into challenges and solutions.' Gerhard Fettweis, Technische Universität, Dresden 'The first comprehensive text on 5G, essential to understand the enabling technologies that will make the future hyper-connected world a reality.' Narcis Cardona, Polytechnic University of Valencia ' a valuable source of information for graduate students specializing in mobile communications. I can truly recommend this book to the entire wireless communication community.' Rafal Krenz, IEEE Communications Magazine

Papildus informācija

A comprehensive overview of the 5G landscape covering technology options, most likely use cases and potential system architectures.
List of contributors
xiv
Foreword xvii
Acknowledgments xix
Acronyms xxii
1 Introduction
1(20)
1.1 Historical background
1(6)
1.1.1 Industrial and technological revolution: from steam engines to the Internet
1(1)
1.1.2 Mobile communications generations: from 1G to 4G
2(4)
1.1.3 From mobile broadband (MBB) to extreme MBB
6(1)
1.1.4 IoT: relation to 5G
7(1)
1.2 From ICT to the whole economy
7(2)
1.3 Rationale of 5G: high data volume, twenty-five billion connected devices and wide requirements
9(3)
1.3.1 Security
11(1)
1.4 Global initiatives
12(3)
1.4.1 METIS and the 5G-PPP
12(2)
1.4.2 China: 5G promotion group
14(1)
1.4.3 Korea: 5G Forum
14(1)
1.4.4 Japan: ARIB 2020 and Beyond Ad Hoc
14(1)
1.4.5 Other 5G initiatives
14(1)
1.4.6 IoT activities
15(1)
1.5 Standardization activities
15(1)
1.5.1 ITU-R
15(1)
1.5.2 3 GPP
16(1)
1.5.3 IEEE
16(1)
1.6 Scope of the book
16(5)
References
18(3)
2 5G use cases and system concept
21(29)
2.1 Use cases and requirements
21(11)
2.1.1 Use cases
21(9)
2.1.2 Requirements and key performance indicators
30(2)
2.2 5G system concept
32(16)
2.2.1 Concept overview
32(2)
2.2.2 Extreme mobile broadband
34(2)
2.2.3 Massive machine-type communication
36(2)
2.2.4 Ultra-reliable machine-type communication
38(1)
2.2.5 Dynamic radio access network
39(4)
2.2.6 Lean system control plane
43(2)
2.2.7 Localized contents and traffic flows
45(1)
2.2.8 Spectrum toolbox
46(2)
2.3 Conclusions
48(2)
References
48(2)
3 The 5G architecture
50(27)
3.1 Introduction
50(6)
3.1.1 NFV and SDN
50(3)
3.1.2 Basics about RAN architecture
53(3)
3.2 High-level requirements for the 5G architecture
56(1)
3.3 Functional architecture and 5G flexibility
57(10)
3.3.1 Functional split criteria
58(1)
3.3.2 Functional split alternatives
59(2)
3.3.3 Functional optimization for specific applications
61(2)
3.3.4 Integration of LTE and new air interface to fulfill 5G requirements
63(3)
3.3.5 Enhanced Multi-RAT coordination features
66(1)
3.4 Physical architecture and 5G deployment
67(7)
3.4.1 Deployment enablers
67(4)
3.4.2 Flexible function placement in 5G deployments
71(3)
3.5 Conclusions
74(3)
References
75(2)
4 Machine-type communications
77(30)
4.1 Introduction
77(6)
4.1.1 Use cases and categorization of MTC
77(3)
4.1.2 MTC requirements
80(3)
4.2 Fundamental techniques for MTC
83(3)
4.2.1 Data and control for short packets
83(2)
4.2.2 Non-orthogonal access protocols
85(1)
4.3 Massive MTC
86(8)
4.3.1 Design principles
86(1)
4.3.2 Technology components
86(8)
4.3.3 Summary of mMTC features
94(1)
4.4 Ultra-reliable low-latency MTC
94(8)
4.4.1 Design principles
94(2)
4.4.2 Technology components
96(5)
4.4.3 Summary of uMTC features
101(1)
4.5 Conclusions
102(5)
References
103(4)
5 Device-to-device (D2D) communications
107(30)
5.1 D2D: from 4G to 5G
107(6)
5.1.1 D2D standardization: 4G LTE D2D
109(3)
5.1.2 D2D in 5G: research challenges
112(1)
5.2 Radio resource management for mobile broadband D2D
113(7)
5.2.1 RRM techniques for mobile broadband D2D
114(1)
5.2.2 RRM and system design for D2D
114(1)
5.2.3 5G D2D RRM concept: an example
115(5)
5.3 Multi-hop D2D communications for proximity and emergency services
120(7)
5.3.1 National security and public safety requirements in 3GPP and METIS
121(1)
5.3.2 Device discovery without and with network assistance
122(1)
5.3.3 Network-assisted multi-hop D2D communications
122(2)
5.3.4 Radio resource management for multi-hop D2D
124(1)
5.3.5 Performance of D2D communications in the proximity communications scenario
125(2)
5.4 Multi-operator D2D communication
127(6)
5.4.1 Multi-operator D2D discovery
127(1)
5.4.2 Mode selection for multi-operator D2D
128(1)
5.4.3 Spectrum allocation for multi-operator D2D
129(4)
5.5 Conclusions
133(4)
References
134(3)
6 Millimeter wave communications
137(21)
6.1 Spectrum and regulations
137(2)
6.2 Channel propagation
139(1)
6.3 Hardware technologies for mmW systems
139(5)
6.3.1 Device technology
139(3)
6.3.2 Antennas
142(1)
6.3.3 Beamforming architecture
143(1)
6.4 Deployment scenarios
144(2)
6.5 Architecture and mobility
146(3)
6.5.1 Dual connectivity
147(1)
6.5.2 Mobility
147(2)
6.6 Beamforming
149(3)
6.6.1 Beamforming techniques
149(1)
6.6.2 Beam finding
150(2)
6.7 Physical layer techniques
152(3)
6.7.1 Duplex scheme
152(1)
6.7.2 Transmission schemes
152(3)
6.8 Conclusions
155(3)
References
156(2)
7 The 5G radio-access technologies
158(50)
7.1 Access design principles for multi-user communications
159(10)
7.1.1 Orthogonal multiple-access systems
160(4)
7.1.2 Spread spectrum multiple-access systems
164(1)
7.1.3 Capacity limits of multiple-access methods
165(4)
7.2 Multi-carrier with filtering: a new waveform
169(9)
7.2.1 Filter-bank based multi-carrier
169(6)
7.2.2 Universal filtered OFDM
175(3)
7.3 Non-orthogonal schemes for efficient multiple access
178(6)
7.3.1 Non-orthogonal multiple access (NOMA)
179(2)
7.3.2 Sparse code multiple access (SCMA)
181(2)
7.3.3 Interleave division multiple access (IDMA)
183(1)
7.4 Radio access for dense deployments
184(8)
7.4.1 OFDM numerology for small-cell deployments
186(2)
7.4.2 Small-cell sub-frame structure
188(4)
7.5 Radio access for V2X communication
192(2)
7.5.1 Medium access control for nodes on the move
192(2)
7.6 Radio access for massive machine-type communication
194(8)
7.6.1 The massive access problem
195(3)
7.6.2 Extending access reservation
198(1)
7.6.3 Direct random access
199(3)
7.7 Conclusions
202(6)
References
202(6)
8 Massive multiple-input multiple-output (MIMO) systems
208(40)
8.1 Introduction
208(3)
8.1.1 MIMO in LTE
210(1)
8.2 Theoretical background
211(6)
8.2.1 Single user MIMO
212(3)
8.2.2 Multi-user MIMO
215(2)
8.2.3 Capacity of massive MIMO: a summary
217(1)
8.3 Pilot design for massive MIMO
217(8)
8.3.1 The pilot-data trade-off and impact of CSI
218(2)
8.3.2 Techniques to mitigate pilot contamination
220(5)
8.4 Resource allocation and transceiver algorithms for massive MIMO
225(8)
8.4.1 Decentralized coordinated transceiver design for massive MIMO
225(3)
8.4.2 Interference clustering and user grouping
228(5)
8.5 Fundamentals of baseband and RF implementations in massive MIMO
233(8)
8.5.1 Basic forms of massive MIMO implementation
233(2)
8.5.2 Hybrid fixed BF with CSI-based precoding (FBCP)
235(3)
8.5.3 Hybrid beamforming for interference clustering and user grouping
238(3)
8.6 Channel models
241(1)
8.7 Conclusions
242(6)
References
243(5)
9 Coordinated multi-point transmission in 5G
248(29)
9.1 Introduction
248(2)
9.2 JT CoMP enablers
250(9)
9.2.1 Channel prediction
252(1)
9.2.2 Clustering and interference floor shaping
253(4)
9.2.3 User scheduling and precoding
257(1)
9.2.4 Interference mitigation framework
257(1)
9.2.5 JT CoMP in 5G
258(1)
9.3 JT CoMP in conjunction with ultra-dense networks
259(1)
9.4 Distributed cooperative transmission
260(8)
9.4.1 Decentralized precoding/filtering design with local CSI
261(4)
9.4.2 Interference alignment
265(3)
9.5 JT CoMP with advanced receivers
268(4)
9.5.1 Dynamic clustering for JT CoMP with multiple antenna UEs
268(3)
9.5.2 Network-assisted interference cancellation
271(1)
9.6 Conclusions
272(5)
References
273(4)
10 Relaying and wireless network coding
277(26)
10.1 The role of relaying and network coding in 5G wireless networks
277(7)
10.1.1 The revival of relaying
278(1)
10.1.2 From 4G to 5G
279(1)
10.1.3 New relaying techniques for 5G
279(2)
10.1.4 Key applications in 5G
281(3)
10.2 Multi-flow wireless backhauling
284(6)
10.2.1 Coordinated direct and relay (CDR) transmission
285(2)
10.2.2 Four-way relaying (FWR)
287(1)
10.2.3 Wireless-emulated wire (WEW) for backhaul
288(2)
10.3 Highly flexible multi-flow relaying
290(5)
10.3.1 Basic idea of multi-flow relaying
290(3)
10.3.2 Achieving high throughput for 5G
293(1)
10.3.3 Performance evaluation
294(1)
10.4 Buffer-aided relaying
295(4)
10.4.1 Why buffers?
296(1)
10.4.2 Relay selection
297(2)
10.4.3 Handling inter-relay interference
299(1)
10.4.4 Extensions
299(1)
10.5 Conclusions
299(4)
References
300(3)
11 Interference management, mobility management, and dynamic reconfiguration
303(33)
11.1 Network deployment types
304(2)
11.1.1 Ultra-dense network or densification
305(1)
11.1.2 Moving networks
305(1)
11.1.3 Heterogeneous networks
306(1)
11.2 Interference management in 5G
306(8)
11.2.1 Interference management in UDN
307(3)
11.2.2 Interference management for moving relay nodes
310(4)
11.2.3 Interference cancelation
314(1)
11.3 Mobility management in 5G
314(9)
11.3.1 User equipment-controlled versus network-controlled handover
315(2)
11.3.2 Mobility management in heterogeneous 5G networks
317(3)
11.3.3 Context awareness for mobility management
320(3)
11.4 Dynamic network reconfiguration in 5G
323(7)
11.4.1 Energy savings through control/user plane decoupling
323(4)
11.4.2 Flexible network deployment based on moving networks
327(3)
11.5 Conclusions
330(6)
References
331(5)
12 Spectrum
336(21)
12.1 Introduction
336(5)
12.1.1 Spectrum for 4G
337(2)
12.1.2 Spectrum challenges in 5G
339(2)
12.2 5G spectrum landscape and requirements
341(4)
12.2.1 Bandwidth requirements
343(2)
12.3 Spectrum access modes and sharing scenarios
345(1)
12.4 5G spectrum technologies
346(3)
12.4.1 Spectrum toolbox
346(1)
12.4.2 Main technology components
347(2)
12.5 Value of spectrum for 5G: a techno-economic perspective
349(3)
12.6 Conclusions
352(5)
References
353(4)
13 The 5G wireless propagation channel models
357(24)
13.1 Introduction
357(1)
13.2 Modeling requirements and scenarios
358(4)
13.2.1 Channel model requirements
359(2)
13.2.2 Propagation scenarios
361(1)
13.3 The METIS channel models
362(17)
13.3.1 Map-based model
363(8)
13.3.2 Stochastic model
371(8)
13.4 Conclusions
379(2)
References
379(2)
14 Simulation methodology
381(20)
14.1 Evaluation methodology
381(6)
14.1.1 Performance indicators
381(2)
14.1.2 Channel simplifications
383(4)
14.2 Calibration
387(5)
14.2.1 Link-level calibration
388(3)
14.2.2 System-level calibration
391(1)
14.3 New challenges in the 5G modeling
392(5)
14.3.1 Real scenarios
393(1)
14.3.2 New waveforms
394(1)
14.3.3 Massive MIMO
395(1)
14.3.4 Higher frequency bands
396(1)
14.3.5 Device-to-device link
396(1)
14.3.6 Moving networks
397(1)
14.4 Conclusions
397(4)
References
398(3)
Index 401
Afif Osseiran is Director of Radio Communications at the Ericsson CTO office. He previously managed the EU 5G flagship project, METIS, and was Technical Manager of the Eureka Celtic project WINNER+. He has co-edited two books on IMT-Advanced and is a senior member of the IEEE. Jose F. Monserrat is an Associate Professor in the Communications Department at the Polytechnic University of Valencia. He is a senior member of the IEEE and has been involved in several European projects, including NEWCOM, PROSIMOS, WINNER+, METIS and METIS-II. Patrick Marsch is a manager at Nokia Networks where he leads a radio research department and is the technical manager of the 5G-PPP project, METIS-II. He was the Technical Project Coordinator of the project EASY-C, where the world's largest research test beds for LTE-Advanced were established. He is co-editor of Coordinated Multi-Point in Mobile Communications (Cambridge, 2011).