Atjaunināt sīkdatņu piekrišanu

5th Joint International Conference on AI, Big Data and Blockchain (ABB 2024) 2024 ed. [Mīkstie vāki]

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 129 pages, height x width: 235x155 mm, 52 Illustrations, color; 4 Illustrations, black and white; XI, 129 p. 56 illus., 52 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Networks and Systems 881
  • Izdošanas datums: 09-Nov-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031731506
  • ISBN-13: 9783031731501
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 198,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 233,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 129 pages, height x width: 235x155 mm, 52 Illustrations, color; 4 Illustrations, black and white; XI, 129 p. 56 illus., 52 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Networks and Systems 881
  • Izdošanas datums: 09-Nov-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031731506
  • ISBN-13: 9783031731501
Citas grāmatas par šo tēmu:

This book is the 5th Joint International Conference on AI, Big Data and Blockchain (ABB 2024), 19–21 Aug 2024, Vienna, Austria. This book constitutes refereed articles which present research work on timely research themes such as novel AI methods and models, deep learning techniques, data analytics and hidden patterns, security, privacy and trust, blockchain data management, and fraud detection and prevention, among others. The intended readership of the book includes researchers, developers, and practitioners in the areas of AI, big data, blockchain techniques, technologies, and their applications.

Privacy Preserving Energy Optimisation in Home Automation Systems.- Self Sovereign Identity Management System Using Verifiable Credentials to Enhance Privacy and Security Through Zero Knowledge Proofs.- Investigation into Data Protection Strategies in Complex Digital Health.- Interpretable SHAP Driven Machine Learning for Accurate Fault Detection in Software Engineering.- Audio Driven Video Filtering Using Machine Learning.