Atjaunināt sīkdatņu piekrišanu

E-grāmata: Acute and Chronic Neural Stimulation via Mechano-Sensitive Ion Channels

  • Formāts: PDF+DRM
  • Sērija : Springer Theses
  • Izdošanas datums: 15-Nov-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319690599
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Springer Theses
  • Izdošanas datums: 15-Nov-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319690599
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book describes the tools, developed by the author, for perturbing endogenous mechano-sensitive ion channels for magneto-mechanical neuro-modulation. He explores the ways in which these tools compare against existing ones such as electricity, chemicals, optogenetics, and techniques like thermos/magneto-genetics. The author also reports on two platforms—magnetic ratcheting and magnetic microfluidics for directed evolution and high throughput culture of magnetotactic bacteria—that produce high quality magnetic nanoparticles for biomedical applications like neural stimulations. This thesis was submitted to and approved by the University of California, Los Angeles.
1 Micro-and Nanotechnologies to Probe Brain Mechanobiology
1(30)
1.1 Introduction
1(4)
1.2 Tools to Explore the Effects of Biomechanical Forces on the Brain
5(5)
1.2.1 Conventional Tools
5(3)
1.2.2 Microtechnology Tools
8(1)
1.2.3 Nanotechnology Tools
9(1)
1.3 Effects of Biomechanical Forces on Cellular Functions
10(13)
1.3.1 Regulation of Gene Expression and Calcium Influx
10(5)
1.3.2 Regulation of Synapses and Neurotransmitter Release
15(2)
1.3.3 Regulation of Neurite Growth
17(2)
1.3.4 Regulation of Circuitry and Plasticity
19(1)
1.3.5 Regulation of Brain Folding
20(1)
1.3.6 Traumatic Brain Injuries
21(2)
1.4 Conclusions
23(1)
References
23(8)
2 Acute Neural Stimulation
31(24)
2.1 Introduction
31(2)
2.2 Results and Discussions
33(9)
2.2.1 Experimental Setup
33(1)
2.2.2 Characterization of Starch- and Chitosan-Coated MNPs
33(2)
2.2.3 Location and Uptake of MNPs
35(1)
2.2.4 Nano-Magnetic Forces Induce Ca2+ Influxes
36(2)
2.2.5 The Location of MNPs Affected the Response of Cortical Neural Networks to Nano-Magnetic Forces
38(1)
2.2.6 Mechanism of Stimulation
38(4)
2.2.7 Lipid Bilayer Stretch Model
42(1)
2.3 Conclusions
42(3)
2.4 Materials and Methods
45(4)
2.4.1 Fabrication of Magnetic Chips
45(1)
2.4.2 Cortical Neural Culture
46(1)
2.4.3 Characterization of Nanoparticle Properties
46(1)
2.4.4 Nanoparticle Incubation
47(1)
2.4.5 Calcium Dye Incubation and Magnetic Force Stimulation
47(1)
2.4.6 Immunofluorescent Labeling
48(1)
2.4.7 Cytotoxicity Assay
48(1)
2.4.8 Flow Cytometry Analysis
48(1)
2.4.9 Image Acquisition, Analysis, and Statistical Evaluations
48(1)
References
49(6)
3 Chronic Neural Stimulation
55(6)
3.1 Modulation of Excitatory: Inhibitory Ion Channel Ratio in Neurons with Magnetic Stimulation
55(2)
3.2 Conclusions
57(2)
3.3 Materials and Methods
59(1)
3.3.1 Quantification of Magnetic Forces
59(1)
3.3.2 Chronic Magnetic Force Stimulation
59(1)
3.3.3 Statistical Significance
60(1)
References
60(1)
4 Phenotypic Selection of Magnetospirillum magneticum (AMB-1) Over-Producers Using Magnetic Ratcheting
61(10)
4.1 Introduction
61(2)
4.2 Results and Discussions
63(2)
4.2.1 Development of Magnetic Ratcheting Platform
63(1)
4.2.2 Generation of AMB-1 Library with Magnetic Ratcheting
63(1)
4.2.3 The Properties of Magnetosomes Produced by Over-producers Were Similar to Wild Type
63(2)
4.3 Conclusions
65(1)
4.4 Materials and Methods
66(2)
4.4.1 Culture Conditions
66(1)
4.4.2 Characterization of Cellular Magnetization (Cmag)
67(1)
4.4.3 Isolation of Magnetosomes
67(1)
4.4.4 SQUID Characterization
67(1)
4.4.5 Chip Fabrication
67(1)
4.4.6 Automated Ratcheting System and Particle Experiments
68(1)
4.4.7 Electron Microscopy
68(1)
References
68(3)
5 Magnetic Microfluidic Separation for Estimating the Magnetic Contents of Magnetotactic Bacteria
71(12)
5.1 Introduction
71(1)
5.2 Results and Discussions
72(5)
5.2.1 Design of Magnetic Microfluidic Device
72(1)
5.2.2 Optimizing Flow Ratio with Particles
72(2)
5.2.3 Minimizing Flagella Motion
74(1)
5.2.4 Assessing the Precision of Quantitative Estimation of Magnetic Contents in AMB-1 Mutants
74(3)
5.2.5 Parallelized Design for Microfluidic Bioreactor
77(1)
5.3 Conclusions
77(1)
5.4 Materials and Methods
77(4)
5.4.1 Microfabrication
77(2)
5.4.2 Device Characterization with Beads
79(1)
5.4.3 Magnetic Field Measurements
79(1)
5.4.4 Culture Conditions
79(1)
5.4.5 Trajectory Tracking
80(1)
5.4.6 Microscopy
80(1)
5.4.7 Electron Microscopy
80(1)
5.4.8 Statistical Analysis
80(1)
References
81(2)
6 Outlook for Magnetic Neural Stimulation Techniques
83(12)
6.1 Reporters of Magnetic Stimulation
83(1)
6.2 Nanotechnology
84(4)
6.2.1 Microfluidics for Magnetic Nanoparticle Synthesis
85(1)
6.2.2 Magnetotactic Bacteria for Magnetosomes and Magnetic Nanoparticles
85(1)
6.2.3 Magnetic Nanoparticles for Crossing the Blood-Brain Barrier
86(1)
6.2.4 Minimizing Cytotoxicity from Magnetic Nanoparticles
87(1)
6.3 Energy-Delivering Devices
88(1)
6.4 Conclusions
89(1)
References
90(5)
Appendix A Supporting Information for Chap. 2 95(6)
Appendix B Supporting Information for Chap. 3 101(2)
Appendix C Supporting Information for Chap. 4 103(8)
Appendix D Supporting Information for Chap. 5 111(6)
References 117
Andy Kah Ping Tay received his PhD in Bioengineering from the University of California, Los Angeles. He has published over 20 articles, with more under review, and is the recipient of 7 academic awards in 2017 alone, including the SciFinder® Future Leaders Program from the American Chemical Society, and the TUM Postdoc Mobility Grant from Technical University of Munich.