Atjaunināt sīkdatņu piekrišanu

E-grāmata: Advanced DC/AC Inverters: Applications in Renewable Energy

(Nanyang Technological University, Singapore), (Nanyang Technological University, Singapore)
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 100,17 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"Renewable energy systems require a large number of converters/inverters. Many new types of inverters have been created in recent decades, and these circuits will largely improve the power factor and increase the power efficiency for the future. This book covers advances DC/AC inverters that are both concise and useful for engineering students and practicing professionals. It uses 150 diagrams to introduce more than 100 topologies of the advanced inverters originally developed by the authors. The book includes more than 50 new circuits"--

DC/AC inversion technology is of vital importance for industrial applications, including electrical vehicles and renewable energy systems, which require a large number of inverters. In recent years, inversion technology has developed rapidly, with new topologies improving the power factor and increasing power efficiency. Proposing many novel approaches, Advanced DC/AC Inverters: Applications in Renewable Energy describes advanced DC/AC inverters that can be used for renewable energy systems. The book introduces more than 100 topologies of advanced inverters originally developed by the authors, including more than 50 new circuits. It also discusses recently published cutting-edge topologies.

Novel PWM and Multilevel Inverters

The book first covers traditional pulse-width-modulation (PWM) inverters before moving on to new quasi-impedance source inverters and soft-switching PWM inverters. It then examines multilevel DC/AC inverters, which have overcome the drawbacks of PWM inverters and provide greater scope for industrial applications. The authors propose four novel multilevel inverters: laddered multilevel inverters, super-lift modulated inverters, switched-capacitor inverters, and switched-inductor inverters. With simple structures and fewer components, these inverters are well suited for renewable energy systems.

Get the Best Switching Angles for Any Multilevel Inverter

A key topic for multilevel inverters is the need to manage the switching angles to obtain the lowest total harmonic distortion (THD). The authors outline four methods for finding the best switching angles and use simulation waveforms to verify the design. The optimum switching angles for multilevel DC/AC inverters are also listed in tables for quick reference.

Application Examples of DC/AC Inverters in Renewable Energy Systems

Highlighting the importance of inverters in improving energy saving and power-supply quality, the final chapter of the book supplies design examples for applications in wind turbine and solar panel energy systems. Written by pioneers in advanced conversion and inversion technology, this book guides readers in designing more effective DC/AC inverters for use in renewable energy systems.

Recenzijas

"The text offers theoretical concepts, diagrams, summarizing tables, simulation and experimental results, and design examples for students, researchers, and engineers willing to learn from experts on how to design and implement inverters for renewable energy systems. valuable for industry professionals willing to know about power inverters cutting-edge technology in renewable energy systems." Fernando A Silva, IEEE INDUSTRIAl ELECTRONICS MAGAZINE, DECEMBER 2013 "The text offers theoretical concepts, diagrams, summarizing tables, simulation and experimental results, and design examples for students, researchers, and engineers willing to learn from experts on how to design and implement inverters for renewable energy systems. valuable for industry professionals willing to know about power inverters cutting-edge technology in renewable energy systems."Fernando A Silva, IEEE INDUSTRIAl ELECTRONICS MAGAZINE, DECEMBER 2013

Preface xi
Authors xiii
1 Introduction
1(20)
1.1 Symbols and Factors Used in This Book
1(8)
1.1.1 Symbols Used in Power Systems
1(4)
1.1.2 Factors and Symbols Used in AC Power Systems
5(3)
1.1.3 Factors and Symbols Used in DC Power Systems
8(1)
1.2 FFT-Fast Fourier Transform
9(8)
1.2.1 Central Symmetrical Periodical Function
10(1)
1.2.2 Axial (Mirror) Symmetrical Periodical Function
10(1)
1.2.3 Nonperiodic Function
10(1)
1.2.4 Useful Formulae and Data
11(1)
1.2.5 Examples of FFT Applications
12(5)
1.3 DC/AC Inverters
17(4)
1.3.1 Categorizing Existing Inverters
18(1)
1.3.2 Updated Circuits
18(1)
1.3.3 Soft Switching Methods
19(1)
References
19(2)
2 Pulse Width-Modulated DC/AC Inverters
21(10)
2.1 Introduction
21(2)
2.2 Parameters Used in PWM Operation
23(6)
2.2.1 Modulation Ratios
23(1)
2.2.1.1 Linear Range (ma ≤ 1.0)
24(1)
2.2.1.2 Over Modulation (1.0 ≤ ma ≤ 3.24)
24(1)
2.2.1.3 Square Wave (Sufficiently Large ma ≥ 3.24)
25(1)
2.2.1.4 Small mf (mf ≤ 21)
26(1)
2.2.1.5 Large mf (mf > 21)
27(1)
2.2.2 Harmonic Parameters
28(1)
2.3 Typical PWM Inverters
29(2)
2.3.1 Voltage Source Inverter (VSI)
29(1)
2.3.2 Current Source Inverter (CSI)
29(1)
2.3.3 Impedance Source Inverter (z-Source Inverter-ZSI)
30(1)
2.3.4 Circuits of DC/AC Inverters
30(1)
References
30(1)
3 Voltage Source Inverters
31(22)
3.1 Single-Phase Voltage Source Inverter
31(7)
3.1.1 Single-Phase Half-Bridge VSI
31(3)
3.1.2 Single-Phase Full-Bridge VSI
34(4)
3.2 Three-Phase Full-Bridge VS1
38(2)
3.3 Vector Analysis and Determination of ma
40(4)
3.3.1 Vector Analysis
40(1)
3.3.2 ma Calculation
41(2)
3.3.3 ma Calculation with L-C Filter
43(1)
3.3.4 Some Waveforms
43(1)
3.4 Multistage PWM Inverter
44(9)
3.4.1 Unipolar PWM VSI
45(2)
3.4.2 Multicell PWM VSI
47(1)
3.4.3 Multilevel PWM Inverter
47(5)
References
52(1)
4 Current Source Inverters
53(8)
4.1 Three-Phase Full-Bridge Current Source Inverter
53(1)
4.2 Boost-Type CSI
53(4)
4.2.1 Negative Polarity Input Voltage
53(3)
4.2.2 Positive Polarity Input Voltage
56(1)
4.3 CSI with L-C Filter
57(4)
References
60(1)
5 Impedance Source Inverters
61(12)
5.1 Comparison with VSI and CSI
61(3)
5.2 Equivalent Circuit and Operation
64(3)
5.3 Circuit Analysis and Calculations
67(2)
5.4 Simulation and Experimental Results
69(4)
References
72(1)
6 Quasi-Impedance Source Inverters
73(14)
6.1 Introduction to ZSI and Basic Topologies
74(1)
6.2 Extended Boost qZSI Topologies
74(13)
6.2.1 Diode-Assisted Extended Boost qZSI Topologies
76(3)
6.2.2 Capacitor-Assisted Extended Boost qZSI Topologies
79(2)
6.2.3 Simulation Results
81(5)
References
86(1)
7 Soft-Switching DC/AC Inverters
87(50)
7.1 Notched DC Link Inverters for Brushless DC Motor Drive
87(16)
7.1.1 Resonant Circuit
89(5)
7.1.2 Design Considerations
94(1)
7.1.3 Control Scheme
95(1)
7.1.3.1 Non-PWM Operation
96(1)
7.1.3.2 PWM Operation
97(2)
7.1.4 Simulation and Experimental Results
99(4)
7.2 Resonant Pole Inverter
103(15)
7.2.1 Topology of Resonant Pole Inverter
104(2)
7.2.2 Operation Principle
106(5)
7.2.3 Design Considerations
111(3)
7.2.4 Simulation and Experimental Results
114(4)
7.3 Transformer-Based Resonant DC Link Inverter
118(19)
7.3.1 Resonant Circuit
119(7)
7.3.2 Design Considerations
126(3)
7.3.3 Control Scheme
129(1)
7.3.3.1 Full Duty Cycle Operation
130(1)
7.3.3.2 PWM Operation
131(1)
7.3.4 Simulation and Experimental Results
131(4)
References
135(2)
8 Multilevel DC/AC Inverters
137(18)
8.1 Introduction
137(3)
8.2 Diode-Clamped Multilevel Inverters
140(5)
8.3 Capacitor-Clamped Multilevel Inverters (Flying Capacitor Inverters)
145(2)
8.4 Multilevel Inverters Using H-Bridges (HBs) Converters
147(4)
8.4.1 Cascaded Equal Voltage Multilevel Inverters (CEMI)
149(1)
8.4.2 Binary Hybrid Multilevel Inverter (BHMI)
149(1)
8.4.3 Quasi-Linear Multilevel Inverter (QLMI)
150(1)
8.4.4 Trinary Hybrid Multilevel Inverter (THMI)
151(1)
8.5 Other Kinds of Multilevel Inverters
151(4)
8.5.1 Generalized Multilevel Inverters (GMI)
151(1)
8.5.2 Mixed-Level Multilevel Inverter Topologies
152(1)
8.5.3 Multilevel Inverters by Connection of Three-Phase Two-Level Inverters
153(1)
References
154(1)
9 Trinary Hybrid Multilevel Inverter (THMI)
155(52)
9.1 Topology and Operation
155(4)
9.2 Proof of Greatest Number of Output Voltage Levels
159(24)
9.2.1 Theoretical Proof
159(1)
9.2.2 Comparison of Various Kinds of Multilevel Inverters
160(1)
9.2.3 Modulation Strategies for THMI
161(1)
9.2.3.1 Step Modulation Strategy
162(5)
9.2.3.2 Virtual Stage Modulation Strategy
167(4)
9.2.3.3 Hybrid Modulation Strategy
171(2)
9.2.3.4 Subharmonic PWM Strategies
173(1)
9.2.3.5 Simple Modulation Strategy
173(2)
9.2.4 Regenerative Power
175(1)
9.2.4.1 Analysis of DC Bus Power Injection
175(2)
9.2.4.2 Regenerative Power in THMI
177(2)
9.2.4.3 Method to Avoid Regenerative Power
179(2)
9.2.4.4 Summary of Regenerative Power in THMI
181(2)
9.3 Experimental Results
183(7)
9.3.1 Experiment to Verify Step Modulation and Virtual Stage Modulation
183(3)
9.3.2 Experiment to Verify New Method to Eliminate Regenerative Power
186(4)
9.4 Trinary Hybrid 81-Level Multilevel Inverter
190(17)
9.4.1 Space Vector Modulation
192(4)
9.4.2 DC Sources of H-Bridges
196(3)
9.4.3 Motor Controller
199(1)
9.4.4 Simulation and Experimental Results
200(5)
References
205(2)
10 Laddered Multilevel DC/AC Inverters Used in Solar Panel Energy Systems
207(24)
10.1 Introduction
207(1)
10.2 Progressions (Series)
208(4)
10.2.1 Arithmetic Progressions
208(1)
10.2.1.1 Unit Progression
209(1)
10.2.1.2 Natural Number Progression
209(1)
10.2.1.3 Odd Number Progression
209(1)
10.2.2 Geometric Progressions
210(1)
10.2.2.1 Binary Progression
210(1)
10.2.2.2 Trinary Number Progression
210(1)
10.2.3 New Progressions
210(1)
10.2.3.1 Luo Progression
211(1)
10.2.3.2 Ye Progression
211(1)
10.3 Laddered Multilevel DC/AC Inverters
212(9)
10.3.1 Special Switches
212(1)
10.3.1.1 Toggle Switch
212(1)
10.3.1.2 Change-over Switch
213(1)
10.3.1.3 Band Switch
213(1)
10.3.2 General Circuit of Laddered Inverters
214(1)
10.3.3 Linear Laddered Inverters (LLIs)
214(1)
10.3.4 Natural Number Laddered Inverters (NNLIs)
215(1)
10.3.5 Odd Number Laddered Inverters (ONLIs)
216(1)
10.3.6 Binary Laddered Inverters (BLIs)
217(1)
10.3.7 Modified Binary Laddered Inverters (MBLIs)
218(1)
10.3.8 Luo Progression Laddered Inverters (LPLIs)
218(2)
10.3.9 Ye Progression Laddered Inverters (YPLIs)
220(1)
10.3.10 Trinary Laddered Inverters (TLIs)
221(1)
10.4 Comparison of All Laddered Inverters
221(2)
10.5 Solar Panel Energy Systems
223(2)
10.6 Simulation and Experimental Results
225(6)
References
229(2)
11 Super-Lift Converter Multilevel DC/AC Inverters Used in Solar Panel Energy Systems
231(12)
11.1 Introduction
231(2)
11.2 Super-Lift Converter Used in Multilevel DC/AC Inverters
233(5)
11.2.1 Seven-Level SL Inverter
233(1)
11.2.2 Fifteen-Level SL Inverter
234(1)
11.2.3 Twenty-One-Level SC Inverter
235(3)
11.3 Simulation and Experimental Results
238(5)
References
242(1)
12 Switched-Capacitor Multilevel DC/AC Inverters in Solar Panel Energy Systems
243(10)
12.1 Introduction
243(1)
12.2 Switched Capacitor Used in Multilevel DC/AC Inverters
244(4)
12.2.1 Five-Level SC Inverter
244(1)
12.2.2 Nine-Level SC Inverter
245(1)
12.2.3 Fifteen-Level SC Inverter
246(1)
12.2.4 Higher-Level SC Inverter
247(1)
12.3 Simulation and Experimental Results
248(5)
References
252(1)
13 Switched Inductor Multilevel DC/AC Inverters Used in Solar Panel Energy Systems
253(10)
13.1 Introduction
253(1)
13.2 Switched Inductor Used in Multilevel DC/AC Inverters
253(4)
13.2.1 Five-Level SI Inverter
253(1)
13.2.2 Nine-Level SL Inverter
254(1)
13.2.3 Fifteen-Level SC Inverter
255(2)
13.3 Simulation and Experimental Results
257(6)
References
261(2)
14 Best Switching Angles to Obtain Lowest THD for Multilevel DC/AC Inverters
263(20)
14.1 Introduction
263(1)
14.2 Methods for Determination of Switching Angle
263(9)
14.2.1 Main Switching Angles
264(1)
14.2.2 Equal-Phase (EP) Method
264(1)
14.2.3 Half-Equal-Phase (HEP) Method
265(1)
14.2.4 Half-Height (HH) Method
265(1)
14.2.5 Feed-Forward (FF) Method
265(1)
14.2.6 Comparison of Methods in Each Level
265(2)
14.2.7 Comparison of Levels for Each Method
267(1)
14.2.8 THDs of Different Methods
267(5)
14.3 Best Switching Angles
272(11)
14.3.1 Using MATLAB® to Obtain Best Switching Angles
272(1)
14.3.2 Analysis of Results of Best Switching Angles Calculation
272(5)
14.3.3 Output Voltage Waveform for Multilevel Inverters
277(5)
References
282(1)
15 Design Examples for Wind Turbine and Solar Panel Energy Systems
283(20)
15.1 Introduction
283(2)
15.2 Wind Turbine Energy Systems
285(10)
15.2.1 Technical Features
285(3)
15.2.2 Design Example for Wind Turbine Power System
288(2)
15.2.2.1 Design Example for Wind Turbine
290(3)
15.2.2.2 Design Example for Converters
293(1)
15.2.2.3 Simulation Results
293(2)
15.3 Solar Panel Energy Systems
295(8)
15.3.1 Technical Features
295(1)
15.3.2 P/O Super-Lift Luo Converter
296(1)
15.3.3 Closed-Loop Control
297(1)
15.3.4 PWM Inverter
298(1)
15.3.5 System Design
299(1)
15.3.6 Simulation Results
300(2)
References
302(1)
Index 303
Prof. Fang Lin Luo, Ph.D., is a full professor at AnHui University, China. He also has a joint appointment with Nanyang Technological University, Singapore. He is a fellow of the Cambridge Philosophical Society and a senior member of the IEEE. He has published 13 books and more than 300 technical papers in the IEEE Transactions and IEE/IET Proceedings as well as in various international conferences. Prof. Luo is currently the associate editor of the IEEE Transactions on Power Electronics and IEEE Transactions on Industrial Electronics. He is also the international editor of Advanced Technology of Electrical Engineering and Energy. He was the general Chairman of the first and third IEEE Conference on Industrial Electronics and Applications (ICIEA 2006 and ICIEA 2008). His research interests include power electronics and DC and AC motor drives with computerized artificial intelligent control (AIC) and digital signal processing (DSP), as well as AC/DC, DC/DC, and AC/AC converters and DC/AC inverters, renewable energy systems, and electrical vehicles.

Dr. Hong Ye, Ph.D., is a research fellow in the School of Biological Sciences at Nanyang Technological University (NTU), Singapore. She is a member of the IEEE and has coauthored 13 books. Dr. Ye has published more than 80 technical papers in IEEE transactions, IEE/IET proceedings, and other international journals, as well as in various international conferences. Her research interests include power electronics and conversion technologies, signal processing, operations research, and structural biology.