Atjaunināt sīkdatņu piekrišanu

Artificial Intelligence and Machine Learning for Digital Pathology: State-of-the-Art and Future Challenges 2020 ed. [Mīkstie vāki]

Edited by , Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 341 pages, height x width: 235x155 mm, weight: 545 g, 84 Illustrations, color; 11 Illustrations, black and white; XII, 341 p. 95 illus., 84 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 12090
  • Izdošanas datums: 21-Jun-2020
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030504018
  • ISBN-13: 9783030504014
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 82,61 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 97,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 341 pages, height x width: 235x155 mm, weight: 545 g, 84 Illustrations, color; 11 Illustrations, black and white; XII, 341 p. 95 illus., 84 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 12090
  • Izdošanas datums: 21-Jun-2020
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030504018
  • ISBN-13: 9783030504014
Citas grāmatas par šo tēmu:

Data driven Artificial Intelligence (AI) and Machine Learning (ML) in digital pathology, radiology, and dermatology is very promising. In specific cases, for example, Deep Learning (DL), even exceeding human performance. However, in the context of medicine it is important for a human expert to verify the outcome. Consequently, there is a need for transparency and re-traceability of state-of-the-art solutions to make them usable for ethical responsible medical decision support. 
Moreover, big data is required for training, covering a wide spectrum of a variety of human diseases in different organ systems. These data sets must meet top-quality and regulatory criteria and must be well annotated for ML at patient-, sample-, and image-level. Here biobanks play a central and future role in providing large collections of high-quality, well-annotated samples and data. The main challenges are finding biobanks containing ‘‘fit-for-purpose’’ samples, providing quality related meta-data, gaining access to standardized medical data and annotations, and mass scanning of whole slides including efficient data management solutions.


Expectations of Artificial Intelligence for Pathology.- Interpretable
Deep Neural Network to Predict Estrogen Receptor Status from
Haematoxylin-Eosin Images.- Supporting the Donation of Health Records to
Biobanks for Medical Research.- Survey of XAI in Digital Pathology.- Sample
Quality as Basic Prerequisite for Data Quality: A Quality Management System
for Biobanks.- Black Box Nature of Deep Learning for Digital Pathology:
Beyond Quantitative to Qualitative Algorithmic Performances.- Towards a
Better Understanding of the Workflows: Modeling Pathology Processes in View
of Future AI Integration.- OBDEX Open Block Data Exchange System.- Image
Processing and Machine Learning Techniques for Diabetic Retinopathy
Detection: A Review.- Higher Education Teaching Material on Machine Learning
in the Domain of Digital Pathology.- Classification vs Deep Learning in
Cancer Degree on Limited Histopathology Datasets.- Biobanks and Biobank-Based
Artificial Intelligence (AI) Implementation Throughan International Lens.-
HistoMapr: An Explainable AI (xAI) Platform for Computational Pathology
Solutions.- Extension of the Identity Management System Mainzelliste to
Reduce Runtimes for Patient Registration in Large Datasets.- Digital Image
Analysis in Pathology Using DNA Stain: Contributions in Cancer Diagnostics
and Development of Prognostic and Theranostic Biomarkers.- Assessment and
Comparison of Colour Fidelity of Whole slide imaging scanners.- Deep Learning
Methods for Mitosis Detection in Breast Cancer Histopathological Images: a
Comprehensive Review.- Developments in AI and Machine Learning for
Neuroimaging.