Atjaunināt sīkdatņu piekrišanu

E-grāmata: Artificial Intelligence and Machine Learning for Digital Pathology: State-of-the-Art and Future Challenges

Edited by , Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 12090
  • Izdošanas datums: 24-Jun-2020
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030504021
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 88,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 12090
  • Izdošanas datums: 24-Jun-2020
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030504021
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Data driven Artificial Intelligence (AI) and Machine Learning (ML) in digital pathology, radiology, and dermatology is very promising. In specific cases, for example, Deep Learning (DL), even exceeding human performance. However, in the context of medicine it is important for a human expert to verify the outcome. Consequently, there is a need for transparency and re-traceability of state-of-the-art solutions to make them usable for ethical responsible medical decision support. 
Moreover, big data is required for training, covering a wide spectrum of a variety of human diseases in different organ systems. These data sets must meet top-quality and regulatory criteria and must be well annotated for ML at patient-, sample-, and image-level. Here biobanks play a central and future role in providing large collections of high-quality, well-annotated samples and data. The main challenges are finding biobanks containing ‘‘fit-for-purpose’’ samples, providing quality related meta-data, gaining access to standardized medical data and annotations, and mass scanning of whole slides including efficient data management solutions.


Expectations of Artificial Intelligence for Pathology.- Interpretable
Deep Neural Network to Predict Estrogen Receptor Status from
Haematoxylin-Eosin Images.- Supporting the Donation of Health Records to
Biobanks for Medical Research.- Survey of XAI in Digital Pathology.- Sample
Quality as Basic Prerequisite for Data Quality: A Quality Management System
for Biobanks.- Black Box Nature of Deep Learning for Digital Pathology:
Beyond Quantitative to Qualitative Algorithmic Performances.- Towards a
Better Understanding of the Workflows: Modeling Pathology Processes in View
of Future AI Integration.- OBDEX Open Block Data Exchange System.- Image
Processing and Machine Learning Techniques for Diabetic Retinopathy
Detection: A Review.- Higher Education Teaching Material on Machine Learning
in the Domain of Digital Pathology.- Classification vs Deep Learning in
Cancer Degree on Limited Histopathology Datasets.- Biobanks and Biobank-Based
Artificial Intelligence (AI) Implementation Throughan International Lens.-
HistoMapr: An Explainable AI (xAI) Platform for Computational Pathology
Solutions.- Extension of the Identity Management System Mainzelliste to
Reduce Runtimes for Patient Registration in Large Datasets.- Digital Image
Analysis in Pathology Using DNA Stain: Contributions in Cancer Diagnostics
and Development of Prognostic and Theranostic Biomarkers.- Assessment and
Comparison of Colour Fidelity of Whole slide imaging scanners.- Deep Learning
Methods for Mitosis Detection in Breast Cancer Histopathological Images: a
Comprehensive Review.- Developments in AI and Machine Learning for
Neuroimaging.