Atjaunināt sīkdatņu piekrišanu

Artificial Intelligence and Smart Vehicles: First International Conference, ICAISV 2023, Tehran, Iran, May 24-25, 2023, Revised Selected Papers 1st ed. 2023 [Mīkstie vāki]

Edited by , Edited by
  • Formāts: Paperback / softback, 217 pages, height x width: 235x155 mm, weight: 361 g, 108 Illustrations, color; 10 Illustrations, black and white; XIV, 217 p. 118 illus., 108 illus. in color., 1 Paperback / softback
  • Sērija : Communications in Computer and Information Science 1883
  • Izdošanas datums: 05-Oct-2023
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031437624
  • ISBN-13: 9783031437625
  • Mīkstie vāki
  • Cena: 69,22 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 81,44 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 217 pages, height x width: 235x155 mm, weight: 361 g, 108 Illustrations, color; 10 Illustrations, black and white; XIV, 217 p. 118 illus., 108 illus. in color., 1 Paperback / softback
  • Sērija : Communications in Computer and Information Science 1883
  • Izdošanas datums: 05-Oct-2023
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031437624
  • ISBN-13: 9783031437625
This book constitutes the refereed proceedings of the First International Conference on Artificial Intelligence and Smart Vehicles, ICAISV 2023, held in Tehran, Iran, during May 24-25, 2023.

The 14 full papers included in this book were carefully reviewed and selected from 93 submissions. They were organized in topical sections as follows: machine learning, data mining, machine vision, image processing, signal analysis, decision support systems, expert systems, and their applications in smart vehicles.
Local and Global Contextual Features Fusion for Pedestrian Intention
Prediction.- Routes analysis and dependency detection based on traffic
volume: a deep learning approach.- Road Sign Classification using Transfer
Learning and Pre-Trained CNN Models.- Improving Safe Driving with Diabetic
Retinopathy Detection.- A Bibliometric Analysis on Artificial Intelligence
and Smart Vehicles.- Convolutional Neural Network and Long Short Term Memory
on Inertial Measurement Unit sensors for Gait Phase Detection.- Real-time
mobile mixed-character license plate recognition via deep learning
convolutional neural network.- Evaluation of Drivers Hazard Perception in
Simultaneous Longitudinal and Lateral Control of Vehicle Using a Driving
Simulator.- Driver Identification by An Ensemble of CNNs Obtained from
Majority-Voting Model Selection.- State-of-the-Art Analysis of the
Performance of the Sensors Utilized in Autonomous Vehicles in Extreme
Conditions.- Semantic Segmentation using Events and Combination of Events and
Frames.- Deep learning-based concrete crack detection using YOLO
architecture.- Generating Control Command for an Autonomous Vehicle Based on
Environmental Information.- Fractal-Based Spatiotemporal Predictive Model for
Car Crash Risk Assessment.