Atjaunināt sīkdatņu piekrišanu

E-grāmata: BioH2 & BioCH4 Through Anaerobic Digestion: From Research to Full-scale Applications

  • Formāts: PDF+DRM
  • Sērija : Green Energy and Technology
  • Izdošanas datums: 02-Feb-2015
  • Izdevniecība: Springer London Ltd
  • Valoda: eng
  • ISBN-13: 9781447164319
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Green Energy and Technology
  • Izdošanas datums: 02-Feb-2015
  • Izdevniecība: Springer London Ltd
  • Valoda: eng
  • ISBN-13: 9781447164319

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book presents a Two-Stage Anaerobic Digestion (TSAD) technique for producing hydrogen and methane, following a step-by-step approach in order to guide readers through the experimental verification of the related hypothesis. In the first stage of AD, the reaction conditions are optimized to obtain the maximum amount of hydrogen, while in the second the liquid residue from the first phase is used as a substrate to produce fuel-methane. AD has traditionally been used to reduce the organic content of waste; this results in a biogas that is primarily constituted of CH4 and CO2. Over the last few decades, the conversion of organic matter into hydrogen by means of AD and selecting Hydrogen Producing Bacteria (HPB) has matured into a viable and sustainable technology among the pallet of H2 generation technologies. The combined bio-production of hydrogen and methane from Organic Waste Materials (OWM) is considered to be an ideal way of utilizing waste, and can increase energy efficiency (the substrate Heat Value converted into H2 and CH4 fuel) to roughly 80%, since the energy efficiency of H2-production alone (15%) is not energetically competitive. The two gas streams can be used either separately or in combination (Hytane®), be supplied as civilian gas or used for transportation purposes. All the aspects of this sustainable technology are taken into account, from the basic biochemical implications to engineering aspects, establishing the design criteria and the scale-up procedures for full-scale application. The sustainability of the TSAD method is assessed by applying EROI (Energy Return On Investment) and EPT (Energy Payback Time) criteria, and both the general approach and application to the field of Anaerobic Digestion are illustrated.  
1 Ecological Mechanisms of Dark H2 Production by a Mixed Microbial Community
1(24)
1.1 The Energy Metabolism of Microorganisms
1(10)
1.1.1 The Tower of Electrons
2(2)
1.1.2 Electron Carriers
4(1)
1.1.3 The Energy Released in Biological Systems
5(3)
1.1.4 The Role of Ferredoxin (Fd) and Hydrogenase
8(3)
1.2 General Information on the Dark H2 Production Process
11(5)
1.2.1 Differences Between Producers and Consumers of Hydrogen Bacteria
12(4)
1.3 Parameters Affecting HPB Activity
16(6)
1.3.1 Temperature
16(1)
1.3.2 pH
16(3)
1.3.3 Redox Potential
19(1)
1.3.4 Substrate
19(1)
1.3.5 Nutrients
19(1)
1.3.6 H2 Partial Pressure
20(1)
1.3.7 Mixing
21(1)
1.4 Conclusion
22(3)
References
22(3)
2 Pretreatment to Increase Hydrogen Producing Bacteria (HPB)
25(12)
2.1 Physiological Differences Between HPB and HCB
25(1)
2.2 Methods of Obtaining HPB
26(3)
2.3 Experimental Evaluation of Acid Pretreatment of Anaerobic Microflora to Produce Bio-H2
29(6)
2.3.1 Applied Methodology
29(2)
2.3.2 Results and Discussion
31(4)
2.4 Conclusion
35(2)
References
35(2)
3 Kinetics, Dynamics and Yield of H2 Production by HPB
37(28)
3.1 Kinetic Models
37(5)
3.1.1 Microorganism Growth Model
37(2)
3.1.2 Kinetic Models of Anaerobic Processes
39(2)
3.1.3 Some Kinetic Models for H2 Production
41(1)
3.2 Experimental Section
42(2)
3.2.1 HPB Sewage Sludge Enrichment
42(1)
3.2.2 Fermentation Tests
42(1)
3.2.3 Analytical Methods
43(1)
3.2.4 Kinetics Study
43(1)
3.3 Results and Comments
44(13)
3.3.1 Lag Phase
46(3)
3.3.2 Exponential Phase
49(1)
3.3.3 Kinetics Evaluation
50(1)
3.3.4 Dynamics of bioH2 Evolution
51(3)
3.3.5 Test in Bioreactor
54(1)
3.3.6 Yield
55(2)
3.4 Conclusion
57(8)
Appendix
58(1)
Macro-approach and Relaxation Time
58(2)
Application to First-Order Kinetics
60(2)
References
62(3)
4 Effect of Temperature on Fermentative H2 Production by HPB
65(20)
4.1 Temperature: A Key Factor in Anaerobic Digestion
65(1)
4.2 Material and Test Procedure
66(3)
4.2.1 Apparatus and Operative Conditions
66(1)
4.2.2 Test with Bioreactor
67(2)
4.2.3 Monitored Parameters
69(1)
4.3 Results of the Test at Ambient Temperature
69(3)
4.3.1 Dynamics of Parameters Monitored
69(2)
4.3.2 Evolution of H2 Production
71(1)
4.3.3 The Significance of Tests at Uncontrolled Temperature
71(1)
4.4 Results of Tests at Different Temperatures
72(10)
4.4.1 Comparison Between Tests at Different Temperatures
72(5)
4.4.2 Liquid Products from H2 Fermentation
77(4)
4.4.3 Yield of Tests According to Temperatures and Metabolic Products
81(1)
4.5 Conclusion
82(3)
References
83(2)
5 Net Energy Production of H2 in Anaerobic Digestion
85(22)
5.1 Introduction
85(1)
5.2 Maximum Obtainable Energy
86(2)
5.3 Energy Conversion Parameters
88(2)
5.4 Net Energy Balance
90(7)
5.4.1 Energy Production
91(1)
5.4.2 Heating Heat
92(1)
5.4.3 Heat Loss
93(3)
5.4.4 Electrical Energy
96(1)
5.5 Results and Comments
97(5)
5.5.1 Energy Production
97(1)
5.5.2 Net Energy Production
98(4)
5.6 Uncertainty Evaluation
102(1)
5.7 Conclusion
103(4)
References
104(3)
6 Hydrogen Production from Biowaste
107(30)
6.1 Biomass as Food for Microorganisms
107(2)
6.2 Lignocelluloses in Organic Waste Materials
109(4)
6.3 Biomass Pretreatments
113(6)
6.3.1 Physical and Physical-Chemical Pretreatments
114(2)
6.3.2 Chemical Pretreatment
116(2)
6.3.3 Biological Pretreatment
118(1)
6.4 Biomass Feedstock for bioH2 Production: An Overview
119(2)
6.5 Experimental Tests from Renewable Agro-Waste
121(11)
6.5.1 Investigation on Pretreatments and H2 Production
121(7)
6.5.2 H2 Production from Vegetable Wastes in a Laboratory-Scale Bioreactor
128(4)
6.6 Conclusion
132(5)
References
133(4)
7 Valorization of Liquid End-Residues of H2 Production by Microbial Fuel Cell
137(24)
7.1 Overview of Bioroutes for Recovery of Additional Energy
137(5)
7.1.1 Photofermentation
137(2)
7.1.2 Biogas Production
139(1)
7.1.3 Microbial Fuel Cells
140(1)
7.1.4 Microbial Electrolysis Cells
140(1)
7.1.5 Metabolic Engineering
141(1)
7.1.6 Mitochondria-Based Fuel Cells
141(1)
7.1.7 Enzyme-Based Fuel Cells
142(1)
7.2 MFCs: Principles and Applications
142(7)
7.2.1 Anode Microbiology
144(3)
7.2.2 Electrical Parameters
147(2)
7.3 Application of MFCs
149(1)
7.4 Integrated Bioenergy Production System
150(1)
7.5 Experimental Study
151(7)
7.5.1 Production of H2 from Acetate by MEC
152(2)
7.5.2 Production of Electricity from Acetate by MFCs
154(4)
7.6 Conclusion
158(3)
References
158(3)
8 Two-Step Anaerobic Digestion Process
161(32)
8.1 Introduction
161(3)
8.2 Scientific Rationale of TSAD
164(7)
8.3 Energy Efficiency
171(1)
8.4 Modeling of TSAD
172(1)
8.5 Experimental Tests for H2 and CH4 Production
172(7)
8.5.1 Preparation and Pretreatment of the Feedstock
173(1)
8.5.2 Seed Microflora for H2 and CH4 Production
173(1)
8.5.3 Experimental Procedure
174(5)
8.6 Results
179(9)
8.6.1 Batch Tests
179(7)
8.6.2 Continuous Tests TSAD from OWM
186(2)
8.7 Conclusion
188(5)
References
189(4)
9 Energy Sustainability Evaluation of Anaerobic Digestion
193(20)
9.1 Introduction to Energy Sustainability
193(1)
9.2 Tools and Definition of Operative Conditions
194(2)
9.3 Energy Sustainability Index (ESI)
196(2)
9.3.1 Theoretical Definition of ESI
196(1)
9.3.2 ESI Application to AD Technology
197(1)
9.4 Analogical Model
198(9)
9.4.1 Analogical Model Description
198(5)
9.4.2 Analogical Model Application to AD Technology
203(4)
9.5 EROI and EPT
207(4)
9.5.1 EROI and EPT Description
207(1)
9.5.2 Use of EROI and EPT in TSAD
208(1)
9.5.3 Use of EROI and EPT in AD
209(2)
9.6 Conclusion
211(2)
References
212(1)
Conclusion 213