Preface |
|
xi | |
Authors |
|
xiii | |
|
|
1 | (18) |
|
1.1 Brief History of Industrial Progress and Generation of Industrial Wastes |
|
|
1 | (2) |
|
1.2 Threats of Metal-Containing Wastes to the Environment |
|
|
3 | (7) |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
9 | (1) |
|
|
10 | (1) |
|
1.3 Advantages of Recycling |
|
|
10 | (2) |
|
|
12 | (7) |
|
|
13 | (6) |
|
Chapter 2 Generation and Composition of Various Metal-Containing Industrial Wastes |
|
|
19 | (44) |
|
|
19 | (1) |
|
|
19 | (3) |
|
2.2.1 Printed Circuit Boards |
|
|
20 | (1) |
|
|
21 | (1) |
|
2.3 Energy Storage Wastes |
|
|
22 | (4) |
|
|
22 | (1) |
|
2.3.1.1 Zinc--Manganese Dioxide Batteries |
|
|
23 | (1) |
|
2.3.1.2 Nickel--Cadmium Batteries |
|
|
24 | (1) |
|
2.3.1.3 Nickel--Metal Hydride Batteries |
|
|
24 | (1) |
|
2.3.1.4 Lithium--Ion Batteries |
|
|
25 | (1) |
|
2.3.2 Button Cell Batteries |
|
|
26 | (1) |
|
2.4 Metal Production Wastes |
|
|
26 | (5) |
|
|
26 | (3) |
|
|
29 | (1) |
|
|
29 | (2) |
|
2.4.4 Electric Arc Furnace Dust |
|
|
31 | (1) |
|
2.5 Solar Photoelectricity Wastes |
|
|
31 | (1) |
|
|
31 | (1) |
|
2.6 Power Plant and Incineration Plant Wastes |
|
|
32 | (4) |
|
2.6.1 Thermal Power Plant Bottom and Fly Ash |
|
|
32 | (2) |
|
2.6.2 Municipal Solid Waste |
|
|
34 | (1) |
|
2.6.3 Coal Cleaning or Beneficiation Waste |
|
|
35 | (1) |
|
|
36 | (1) |
|
2.7.1 Spent Petroleum Catalysts |
|
|
36 | (1) |
|
|
37 | (1) |
|
2.8.1 Municipal Sewage Sludge |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
38 | (2) |
|
2.9.1 Light-Emitting Diodes |
|
|
38 | (1) |
|
2.9.2 Mercury Light Bulb Wastes |
|
|
39 | (1) |
|
|
40 | (1) |
|
|
41 | (22) |
|
|
44 | (19) |
|
Chapter 3 Conventional Metal Recycling Techniques |
|
|
63 | (34) |
|
|
63 | (1) |
|
3.2 Methods for Metal Recovery |
|
|
64 | (19) |
|
3.2.1 Physical/Mechanical Methods |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
64 | (1) |
|
3.2.1.3 Magnetic Separation |
|
|
64 | (1) |
|
3.2.1.4 Electric Conductivity--Based Separation |
|
|
64 | (1) |
|
3.2.1.5 Density-Based Separation |
|
|
65 | (1) |
|
3.2.2 Pyrometallurgical Method |
|
|
65 | (1) |
|
3.2.3 Hydrometallurgical Method |
|
|
66 | (3) |
|
3.2.4 Microbiological and Biochemical Recycling |
|
|
69 | (1) |
|
3.2.4.1 Microbial/Bioleaching Process |
|
|
70 | (2) |
|
3.2.4.2 Mechanisms Underlying the Bioleaching Process |
|
|
72 | (11) |
|
3.3 Conclusion and Future Perspective |
|
|
83 | (14) |
|
|
84 | (13) |
|
Chapter 4 Recycling of Electronic Waste |
|
|
97 | (40) |
|
|
97 | (1) |
|
4.2 Bioleaching of Metals from E-Waste |
|
|
98 | (32) |
|
|
98 | (2) |
|
4.2.2 Printed Circuit Boards (PCBs) |
|
|
100 | (1) |
|
4.2.2.1 Microorganisms for Metal Recovery from PCBs |
|
|
100 | (17) |
|
|
117 | (7) |
|
4.2.3 Kinetics of Metal Recovery |
|
|
124 | (1) |
|
4.2.4 Process Optimization for Metal Recovery |
|
|
124 | (3) |
|
4.2.5 Use of Biosurfactants in Metal Recovery |
|
|
127 | (1) |
|
4.2.6 Leaching Process Using Enzymes |
|
|
128 | (2) |
|
|
130 | (7) |
|
|
130 | (7) |
|
Chapter 5 Recycling of Energy Storage Wastes |
|
|
137 | (22) |
|
|
137 | (1) |
|
5.2 Bioleaching of Metals from Energy Storage Wastes |
|
|
137 | (18) |
|
|
137 | (1) |
|
5.2.1.1 Lithium-Ion Batteries |
|
|
137 | (8) |
|
5.2.1.2 Ni--Cd and Ni--MH Batteries |
|
|
145 | (6) |
|
|
151 | (3) |
|
|
154 | (1) |
|
|
155 | (4) |
|
|
156 | (3) |
|
Chapter 6 Recycling of Metal Production Wastes |
|
|
159 | (20) |
|
|
159 | (1) |
|
|
159 | (9) |
|
|
159 | (7) |
|
|
166 | (2) |
|
6.3 Bioleaching of Foundry Sand |
|
|
168 | (1) |
|
6.4 Bioleaching of Industrial Waste Dust |
|
|
169 | (5) |
|
|
169 | (3) |
|
|
172 | (1) |
|
|
173 | (1) |
|
6.4.4 Industrial Filter Dust |
|
|
173 | (1) |
|
6.5 Bioleaching of Industrial Waste Sludge |
|
|
174 | (1) |
|
|
174 | (5) |
|
|
174 | (5) |
|
Chapter 7 Recycling of Solar Electricity Waste |
|
|
179 | (4) |
|
|
179 | (1) |
|
7.2 Bioleaching of Metals from Solar Electricity Waste |
|
|
180 | (1) |
|
|
180 | (3) |
|
|
181 | (2) |
|
Chapter 8 Recycling of Thermal Power Generation Wastes |
|
|
183 | (22) |
|
|
183 | (1) |
|
8.2 Bioleaching of Thermal Power Generation Waste |
|
|
183 | (17) |
|
8.2.1 Microorganisms for Metal Recovery from Fly Ash |
|
|
183 | (15) |
|
8.2.2 Process Optimization for Metal Recovery |
|
|
198 | (2) |
|
8.2.3 Kinetics of Metal Recovery |
|
|
200 | (1) |
|
|
200 | (5) |
|
|
201 | (4) |
Index |
|
205 | |